Thermal Decomposition of High-magnesium Low-nickel Laterite: Theoretical Calculation and Experimental Study
WANG Yukun1,2, WEI Yonggang1,2, PENG Bo1,2 , LI Bo1,2, ZHOU Shiwei1,2
1 State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 2 Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093
Abstract: The high-magnesium low-nickel laterite was taken as raw material, the thermal decomposition experiment by calcination was carried out to study the phase transformation of dehydroxylation and re-crystallization during the thermal decomposition of laterite. Based on the experimental study on phase transformation of thermal decomposition of serpentine, the experimental process was simulated by theoretical calculation to clarify the phase transformation of magnesite laterite during heating process. The results indicated that Mg3Si2O5(OH)4 was the major ingredient of laterite, dehydroxylation reaction occurred when temperature exceeded 612 ℃, and amorphous silicate mineral generated. Subsequently, the recrystallization occurred when heating up to 817 ℃, generating peridot phase, enstatite, as well as a small amount of SiO2. By means of density functional theory (DFT), the atomic bond length, state density and Millikan population of Mg3Si2O5(OH)4 were calculated, and its molecular dynamics calculation during thermal decomposition was simulated. The results showed that under the condition of kinetic simulation, the hydroxyl groups in Mg3Si2O5(OH)4 would be separated directly in the form of hydroxyl to form amorphous silicate products. With the rising temperature, the SiO2 in amorphous silicate tended to dissociate and separate, participating in re-crystallization process and producing peridot phase and enstatite with better crystallinity. The calculation simulated results were well fitted with the experimental results.
1 Peng B, Qing R. The Engineer of Non-Ferrous Metal, 2011, 1(4), 15(in Chinese). 彭犇, 清瑞.有色金属工程, 2011, 1(4), 15. 2 Pang J M, Guo P M, Zhao P, et al. Journal of Iron and Steel Research, 2011, 23(6),1(in Chinese). 庞建明, 郭培民, 赵沛, 等.钢铁研究学报, 2011, 23(6),1. 3 Liu Y, Zhai Y C, Wang H. Materials Review, 2006, 20(3), 79(in Chinese). 刘岩, 翟玉春, 王虹.材料导报, 2006, 20(3), 79. 4 Zhao J F, Sun Z, Zheng P, et al. Non-ferrous Minging and Metallurgy, 2012, 28(6), 39(in Chinese). 赵景富, 孙镇, 郑鹏, 等.有色矿冶, 2012, 28(6), 39. 5 Zhu D Q, Cui Y, Hapugoda S, et al. Transactions of Nonferrous Metals Society of China,2012, 22(4), 907. 6 Li J H, Li Y Y, Zheng S, et al. Nonferrous Metals Science and Enginee-ring, 2015(1), 35. 李金辉, 李洋洋, 郑顺, 等.有色金属科学与工程, 2015(1), 35. 7 Li Y Y, Li J H, Zhang Y F, et al. Materials Review A:Review Papers, 2015, 29(9), 79(in Chinese). 李洋洋, 李金辉, 张云芳, 等. 材料导报:综述篇, 2015, 29(9), 79. 8 Parr R G. Chemical & Engineering News, 1983, 68(1), 2470. 9 Xu G X, Li L M, Wang D M. Quantum chemistry:Fundamentals and abinitio methods,Science Press, China, 2009(in Chinese). 徐光宪, 黎乐民, 王德民. 量子化学:基本原理和从头计算法,科学出版社, 2009. 10 Balan E, Saitta A M, Mauri F, et al. American Mineralogist, 2002, 87(10),1286. 11 Prencipe, Noel M, Bruno Y, et al. American Mineralogist, 2009, 94(7), 986. 12 Wen S M, Deng J S, Xian Y J, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(3), 796. 13 都兴红, 刘慧, 牛亚慧, 等. 全国冶金物理化学学术会议. 昆明,2013,pp.6. 14 Li Q, Li B, Wei Y G, et al. Chinese Journal of Rare Metals, 2016, 40(5), 485. 李谦, 李博, 魏永刚, 等.稀有金属, 2016, 40(5), 485. 15 Ma G H. Controllable synthesis and growth mechanism of serpentine nanostructures. Master’s Thesis, Chinese Academy of Engineering Phy-sics, China, 2012(in Chinese). 马国华. 蛇纹石结构纳米材料的可控合成与生长机理研究. 硕士学位论文,中国工程物理研究院, 2012. 16 Hu L, Liu D C, Chen X M, et al. The Chinese Journal of Nonferrous Metals, 2014(9), 2410(in Chinese). 胡亮, 刘大春, 陈秀敏, 等.中国有色金属学报, 2014(9), 2410. 17 Perdew J P, Burke K, Physical Review Letters, 1996, 77(18), 3865. 18 Perdew J P, Zunger A. Physical Review B, 1981, 23(10), 5048. 19 Qin Y H, Qiao Y J.Functional Materials, 2015, 46(22), 22058(in Chinese). 秦永和, 乔英杰.功能材料, 2015, 46(22), 22058. 20 Fischer T H, Almlof J. The Journal of Physical Chemistry, 1992, 96(24), 9768. 21 Arias T A, Payne M C, Joannopoulos J D. Physical Review Letters, 1992, 69(7), 1077. 22 Yuan Q G. Research on the properties of slag with low-lime in nickel late-rite smelting process with electric furnace. Master’s Thesis, Chongqing University, China, 2014(in Chinese). 袁秋刚. 红土镍矿电炉冶炼工艺低钙渣系性质研究. 硕士学位论文,重庆大学, 2014. 23 Li H Z, Guo H J. Ferro-Alloys, 2014, 45(4), 40(in Chinese). 李好泽, 郭汉杰.铁合金, 2014, 45(4), 40. 24 Li B, Wei Y G, Wang H, et al. The Chinese Journal of Nonferrous Me-tals, 2013(5), 1440(in Chinese). 李博, 魏永刚, 王华, 等.中国有色金属学报, 2013(5), 1440. 25 Lu Y. Theoretical calculation of Al2O3carbothermic products chlorination and AlN chlorination. Master's Thesis, Kunming University of Science and Technology, China, 2016(in Chinese). 卢勇.Al2O3碳热产物及AlN氯化机理研究. 硕士学位论文,昆明理工大学, 2016. 26 Zhou S, Wei Y, Li B, et al. Journal of Alloys & Compounds, 2017, 713,180. 27 Barbottin G,Vapaille A. Instabilities in Silicon Devices:Silicon Passivation and Related Instabilities, Elsevier Science Publishers, USA, 1986.