Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1406-1411    https://doi.org/10.11896/cldb.18010015
  金属与金属基复合材料 |
镁质贫镍红土矿热分解理论计算与实验研究
王宇鲲1,2, 魏永刚1,2, 彭博1,2, 李博1,2, 周世伟1,2
1 昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室,昆明 650093
2 昆明理工大学冶金与能源工程学院,昆明 650093
Thermal Decomposition of High-magnesium Low-nickel Laterite: Theoretical Calculation and Experimental Study
WANG Yukun1,2, WEI Yonggang1,2, PENG Bo1,2 , LI Bo1,2, ZHOU Shiwei1,2
1 State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093
2 Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 2587KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以镁质贫镍红土矿为原料,对其进行焙烧热分解实验,研究红土矿受热分解过程中的脱羟基反应与重结晶过程的物相转变。以蛇纹石热分解物相转变的实验研究为基础进行模拟结果验证,通过理论计算模拟了实验过程,以阐明镁质红土矿升温过程中的物相转变作用机制。结果表明,红土矿中主要成分是蛇纹石相(Mg3Si2O5(OH)4),升温至612 ℃后发生脱羟基反应,生成非晶态硅酸盐;继续加热至817 ℃发生重结晶反应,生成橄榄石和顽辉石相以及少量的SiO2。通过密度泛函理论(DFT)计算Mg3Si2O5(OH)4原子的键长、态密度、密立根布居等参数,对其热分解过程进行分子动力学计算模拟。结果显示,动力学模拟条件下,蛇纹石内部羟基以氢氧根的形式直接脱离,生成非晶态硅酸盐产物,继续升温,非晶态硅酸盐中SiO2有离解分离的趋势,参与重结晶过程,生成结晶度良好且致密的橄榄石和顽辉石相,计算模拟结果与实验结果吻合较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宇鲲
魏永刚
彭博
李博
周世伟
关键词:  红土镍矿  热分解  密度泛函理论  动力学模拟    
Abstract: The high-magnesium low-nickel laterite was taken as raw material, the thermal decomposition experiment by calcination was carried out to study the phase transformation of dehydroxylation and re-crystallization during the thermal decomposition of laterite. Based on the experimental study on phase transformation of thermal decomposition of serpentine, the experimental process was simulated by theoretical calculation to clarify the phase transformation of magnesite laterite during heating process. The results indicated that Mg3Si2O5(OH)4 was the major ingredient of laterite, dehydroxylation reaction occurred when temperature exceeded 612 ℃, and amorphous silicate mineral generated. Subsequently, the recrystallization occurred when heating up to 817 ℃, generating peridot phase, enstatite, as well as a small amount of SiO2. By means of density functional theory (DFT), the atomic bond length, state density and Millikan population of Mg3Si2O5(OH)4 were calculated, and its molecular dynamics calculation during thermal decomposition was simulated. The results showed that under the condition of kinetic simulation, the hydroxyl groups in Mg3Si2O5(OH)4 would be separated directly in the form of hydroxyl to form amorphous silicate products. With the rising temperature, the SiO2 in amorphous silicate tended to dissociate and separate, participating in re-crystallization process and producing peridot phase and enstatite with better crystallinity. The calculation simulated results were well fitted with the experimental results.
Key words:  laterite nickel ore    thermal decomposition    density functional theory    dynamics simulation
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TF815  
基金资助: 国家自然科学基金(U1302274;51304091);昆明理工大学分析测试基金(2017M20152102037)
作者简介:  王宇鲲,2018年6月毕业于昆明理工大学,获得工学硕士学位,主要从事复杂有色金属资源综合利用方向的研究。魏永刚,昆明理工大学,教授,博导。2008年7月获昆明理工大学冶金物理化学专业博士学位,并留校工作至今。主要从事有色金属低碳冶炼新技术、二次资源综合利用等领域的研究。Email: weiygcp@aliyun.com
引用本文:    
王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
WANG Yukun, WEI Yonggang, PENG Bo , LI Bo, ZHOU Shiwei. Thermal Decomposition of High-magnesium Low-nickel Laterite: Theoretical Calculation and Experimental Study. Materials Reports, 2019, 33(8): 1406-1411.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010015  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1406
1 Peng B, Qing R. The Engineer of Non-Ferrous Metal, 2011, 1(4), 15(in Chinese).
彭犇, 清瑞.有色金属工程, 2011, 1(4), 15.
2 Pang J M, Guo P M, Zhao P, et al. Journal of Iron and Steel Research, 2011, 23(6),1(in Chinese).
庞建明, 郭培民, 赵沛, 等.钢铁研究学报, 2011, 23(6),1.
3 Liu Y, Zhai Y C, Wang H. Materials Review, 2006, 20(3), 79(in Chinese).
刘岩, 翟玉春, 王虹.材料导报, 2006, 20(3), 79.
4 Zhao J F, Sun Z, Zheng P, et al. Non-ferrous Minging and Metallurgy, 2012, 28(6), 39(in Chinese).
赵景富, 孙镇, 郑鹏, 等.有色矿冶, 2012, 28(6), 39.
5 Zhu D Q, Cui Y, Hapugoda S, et al. Transactions of Nonferrous Metals Society of China,2012, 22(4), 907.
6 Li J H, Li Y Y, Zheng S, et al. Nonferrous Metals Science and Enginee-ring, 2015(1), 35.
李金辉, 李洋洋, 郑顺, 等.有色金属科学与工程, 2015(1), 35.
7 Li Y Y, Li J H, Zhang Y F, et al. Materials Review A:Review Papers, 2015, 29(9), 79(in Chinese).
李洋洋, 李金辉, 张云芳, 等. 材料导报:综述篇, 2015, 29(9), 79.
8 Parr R G. Chemical & Engineering News, 1983, 68(1), 2470.
9 Xu G X, Li L M, Wang D M. Quantum chemistry:Fundamentals and abinitio methods,Science Press, China, 2009(in Chinese).
徐光宪, 黎乐民, 王德民. 量子化学:基本原理和从头计算法,科学出版社, 2009.
10 Balan E, Saitta A M, Mauri F, et al. American Mineralogist, 2002, 87(10),1286.
11 Prencipe, Noel M, Bruno Y, et al. American Mineralogist, 2009, 94(7), 986.
12 Wen S M, Deng J S, Xian Y J, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(3), 796.
13 都兴红, 刘慧, 牛亚慧, 等. 全国冶金物理化学学术会议. 昆明,2013,pp.6.
14 Li Q, Li B, Wei Y G, et al. Chinese Journal of Rare Metals, 2016, 40(5), 485.
李谦, 李博, 魏永刚, 等.稀有金属, 2016, 40(5), 485.
15 Ma G H. Controllable synthesis and growth mechanism of serpentine nanostructures. Master’s Thesis, Chinese Academy of Engineering Phy-sics, China, 2012(in Chinese).
马国华. 蛇纹石结构纳米材料的可控合成与生长机理研究. 硕士学位论文,中国工程物理研究院, 2012.
16 Hu L, Liu D C, Chen X M, et al. The Chinese Journal of Nonferrous Metals, 2014(9), 2410(in Chinese).
胡亮, 刘大春, 陈秀敏, 等.中国有色金属学报, 2014(9), 2410.
17 Perdew J P, Burke K, Physical Review Letters, 1996, 77(18), 3865.
18 Perdew J P, Zunger A. Physical Review B, 1981, 23(10), 5048.
19 Qin Y H, Qiao Y J.Functional Materials, 2015, 46(22), 22058(in Chinese).
秦永和, 乔英杰.功能材料, 2015, 46(22), 22058.
20 Fischer T H, Almlof J. The Journal of Physical Chemistry, 1992, 96(24), 9768.
21 Arias T A, Payne M C, Joannopoulos J D. Physical Review Letters, 1992, 69(7), 1077.
22 Yuan Q G. Research on the properties of slag with low-lime in nickel late-rite smelting process with electric furnace. Master’s Thesis, Chongqing University, China, 2014(in Chinese).
袁秋刚. 红土镍矿电炉冶炼工艺低钙渣系性质研究. 硕士学位论文,重庆大学, 2014.
23 Li H Z, Guo H J. Ferro-Alloys, 2014, 45(4), 40(in Chinese).
李好泽, 郭汉杰.铁合金, 2014, 45(4), 40.
24 Li B, Wei Y G, Wang H, et al. The Chinese Journal of Nonferrous Me-tals, 2013(5), 1440(in Chinese).
李博, 魏永刚, 王华, 等.中国有色金属学报, 2013(5), 1440.
25 Lu Y. Theoretical calculation of Al2O3carbothermic products chlorination and AlN chlorination. Master's Thesis, Kunming University of Science and Technology, China, 2016(in Chinese).
卢勇.Al2O3碳热产物及AlN氯化机理研究. 硕士学位论文,昆明理工大学, 2016.
26 Zhou S, Wei Y, Li B, et al. Journal of Alloys & Compounds, 2017, 713,180.
27 Barbottin G,Vapaille A. Instabilities in Silicon Devices:Silicon Passivation and Related Instabilities, Elsevier Science Publishers, USA, 1986.
[1] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[2] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[3] 陈军, 闵凡飞, 刘令云. 煤泥水中微细煤与高岭石颗粒间微观作用的密度泛函研究[J]. 材料导报, 2019, 33(16): 2677-2683.
[4] 马砺, 刘志超, 肖旸, 康付如, 杨昆, 邓军. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11): 1836-1841.
[5] 吴苗苗李洺阳, 李鸿鹏, 张翔, 魏雪虎, 杨志宾, 马向东. BxSy、BxSey (x=1、2, y=1—6)团簇结构的计算模拟研究[J]. 材料导报, 2019, 33(10): 1646-1651.
[6] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[7] 解婕, 包桂蓉, 孟一鸣, 杨智翔, 何涛. 超临界甲醇中2,3-二氢苯并呋喃加氢脱氧的理论研究[J]. 材料导报, 2018, 32(6): 977-982.
[8] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[9] 赵兴华, 刘维慧, 李春, 元光. NO3为配体的超卤素/飙卤素的理论研究[J]. 材料导报, 2018, 32(20): 3531-3534.
[10] 黄俊, 李荣兴, 谢刚, 田林, 杨妮, 俞小花, 李威. 金红石型TiO2(110)表面吸附TiCl4的微观机理[J]. 材料导报, 2018, 32(20): 3524-3530.
[11] 栾扬,赵志曼,全思臣,曾众,吴佳丽,梁祎. 基于密度泛函理论研究磷建筑石膏晶体表面吸附丁二酸转晶机理[J]. 《材料导报》期刊社, 2018, 32(12): 2118-2123.
[12] 方 炜,王 磊. 碳纳米豆荚内C60分子的振荡行为[J]. 《材料导报》期刊社, 2018, 32(10): 1737-1742.
[13] 刘建国, 安振涛, 张倩, 杜仕国, 姚凯, 王金. 硝酸羟胺的热稳定性评估及热分解机理研究*[J]. 《材料导报》期刊社, 2017, 31(4): 145-152.
[14] 杨明君, 邓彬彬, 马占. 聚酰亚胺玻璃化转变的动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(12): 136-139.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed