Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1602-1608    https://doi.org/10.11896/cldb.18020076
  无机金属及其复合材料 |
硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究
余明远1, 王璐2,3,4, 5, 曲雯雯1,2,3,4, 5, , 张利波2,3,4, 5, 张家麟1,2,3,4, 5, 陈阵1
1 昆明理工大学理学院,昆明 650093
2 昆明理工大学,云南省特种冶金重点实验室,昆明 650093
3 非常规冶金教育部重点实验室,昆明 650093
4 微波能工程应用及装备技术国家地方联合工程实验室,昆明 650093
5 昆明理工大学冶金与能源工程学院,昆明 650093
Microwave-Hydrothermal Synthesis of CdS/rGO Composite Photocatalyst: an Investigation of Experiment and Theory
YU Mingyuan1, WANG Lu2,3,4,5, QU Wenwen1,2,3,4,5, ZHANG Libo2,3,4,5, ZHANG Jialin1,2,3,4,5, CHEN Zhen1
1 Faculty of Science, Kunming University of Science and Technology, Kunming 650093
2 Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming University of Science and Technology, Kunming 650093
3 Key Laboratory of Unconventional Metallurgy of Ministry of Education, Kunming 650093
4 National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093
5 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 15182KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用微波水热法制备了CdS/rGO纳米复合光催化剂,通过XRD、FTIR、XPS、SEM、TEM对其结构和形貌进行了表征,结合UV-Vis和密度泛函(DFT)计算对异质界面的电荷转移机制进行了研究。结果表明所得复合材料中CdS分散性好、显示出较高的可见光催化活性和光稳定性。当rGO含量为0.5 mg/mL时复合材料的光催化性能最佳,可见光照射120 min后亚甲基蓝(MB)的光降解率达到94.40%,且五次循环实验光催化效果接近。界面相互作用、差分电荷密度、平均静电势等计算结果表明CdS与rGO通过范德华弱相互作用形成稳定异质界面,电荷由CdS向rGO转移,电子和空穴在两相界面实现了有效分离,因而材料的光催化性能得到增强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余明远
王璐
曲雯雯
张利波
张家麟
陈阵
关键词:  硫化镉/石墨烯  微波水热合成  密度泛函理论  光催化  石墨烯含量    
Abstract: The CdS/rGO nanocomposites were prepared via microwave-hydrothermal process. The structure and morphology of CdS/rGO composites was characterized by XRD, FTIR, XPS, SEM, and TEM. The mechanism of charge transfer for CdS/rGO heterogeneous interface was investigated by UV-Vis spectra combined density functional theory (DFT) calculations. The results indicated that the CdS in CdS/rGO displayed good dispersion, high photocatalytic activity, and excellent light stability. When the content of rGO was 0.5 mg/mL, the composite exhibited the best photocatalytic activity. The photodegradation rate of methylene blue (MB) reached 94.40 % after 120 min in visible light and the composite had the similar photocatalytic performance during five cycles. The DFT calculations such as interfacial interaction, charge density difference, ave-rage electrostatic potential et al revealed that the hetero-interface between CdS and rGO formed via van der Waals' interaction, which resulted in stabilization of composites. The introduction of rGO promoted the efficient transport of photo-induced electrons from CdS to the rGO, and gave rise to spatial separation of photo-generated electrons and holes. Hence, the enhancement of photocatalytic performance was observed.
Key words:  cadmium sulfide/graphene    microwave-hydrothermal method    DFT    photocatalyst    content of graphene
                    发布日期:  2019-05-16
ZTFLH:  TB321  
  O469  
基金资助: 国家自然科学基金(51562018;51004059);昆明理工大学学科方向团队(14078318)
通讯作者:  qwwen1977@126.com   
作者简介:  余明远,2018年6月毕业于昆明理工大学,获得理学硕士学位。主要研究方向为半导体光催化材料的合成及应用,功能材料的第一性原理计算。曲雯雯,昆明理工大学,教授。2006年7月毕业于北京师范大学,物理化学专业博士学位。主要从事复合光催化材料的微波合成、功能材料表界面微观结构与性质的第一性原理模拟以及废催化剂的资源化再生利用。
引用本文:    
余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
YU Mingyuan, WANG Lu, QU Wenwen, ZHANG Libo, ZHANG Jialin, CHEN Zhen. Microwave-Hydrothermal Synthesis of CdS/rGO Composite Photocatalyst: an Investigation of Experiment and Theory. Materials Reports, 2019, 33(10): 1602-1608.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18020076  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1602
1 Chen J, Wu X J, Yin L, et al.Angewandte Chemie, 2015, 54(4), 1210.
2 And D J, Guo L.Journal of Physical Chemistry B, 2006, 110(23),11139.
3 Cao W, Zhang X, Zheng Y, et al.International Journal of Hydrogen Energy, 2017, 42(5),2924.
4 Kansal S K, Singh M, Sud D.Journal of Hazardous Materials, 2007, 141(3),581.
5 Li Q, Guo B, Yu J, et al.Journal of the American Chemical Society, 2011, 133(28),10878.
6 Sun W T, Yu Y, Pan H Y, et al.Journal of the American Chemical Society, 2008, 130(4),1124.
7 Wang M, Cai L, Wang Y, et al. Journal of the American Chemical Society, 2017,139 (11), 4144.
8 Gao P, Liu J, Sun D D, et al.Journal of Hazardous Materials, 2013, s 250,412.
9 Min Y, He G, Xu Q, et al.Journal of Materials Chemistry A, 2014, 2(8),2578.
10 Cao S, Low J, Yu J, et al.Advanced Materials, 2015, 27(13),2150.
11 Zhang C, Chen G, Li C, et al.ACS Sustainable Chemistry & Engineering, 2016, 4(11),5936.
12 Geim A K.Science, 2009, 324(5934),1530.
13 Peng T, Li K, Zeng P, et al.Journal of Physical Chemistry C, 2015, 116(43),22720.
14 Xiao F X, Miao J, Liu B.Journal of the American Chemical Society, 2014, 136(4),1559.
15 Lin Y C, Tsai D C, Chang Z C, et al. Applied Surface Science,2018, 440, 1227.
16 Zhang N, Zhang Y, Pan X, et al. Journal of Physical Chemistry C, 2012, 116(6),18023.
17 Kaveri S, Thirugnanam L, Dutta M, et al.Ceramics International, 2013, 39(8),9207.
18 Liu J, Pu X, Zhang D, et al.Materials Research Bulletin, 2014, 57(23),29.
19 Ye A, Fan W, Zhang Q, et al.Catalysis Science & Technology, 2012, 2(5), 969.
20 Lee J S, You K H, Park C B, et al.Advanced Materials, 2012, 24(8), 1084.
21 Lv X, Fu W, Chang H, et al.Journal of Materials Chemistry, 2012, 22(4),1539.
22 Zhou K, Zhang J F, et al. Journal of Functional Materials, 2018, 49(5), 5016 (in Chinese).
周凯, 张建锋, 等.功能材料, 2018, 49(5), 5016.
23 Dong C, Li X, Jin P, et al.Journal of Physical Chemistry C, 2012, 116(29),15833.
24 Liu X, Pan L, Lv T, et al.Chemical Communications, 2011, 47(43),11984.
25 Yin R, Li J, Liu R, et al.Materials Review, 2011, 25(s1), 64(in Chinese).
殷蓉, 李景印, 刘瑞红,等.材料导报, 2011, 25(s1), 64.
26 Delley B.Journal of Chemical Physics, 2000, 113(18),7756.
27 Clark S J, Segall M D, Pickard C J, et al.Zeitschrift für Kristallographie, 2005, 220,567.
28 Perdew J P, Burke K, Ernzerhof M.Physical Review Letters, 1996, 77(18),3865.
29 Vanderbilt D.Physical Review B Condensed Matter, 1990, 41(11),7892.
30 Grimme S.Journal of Computational Chemistry, 2006, 27(15),1787.
31 Grimme S.Journal of Computational Chemistry, 2004, 25(12),1463.
32 Zhang H, Lv X, Li Y, et al.ACS Nano, 2010, 4(1),380.
33 Yang M Q, Weng B, Xu Y J.Langmuir the ACS Journal of Surfaces & Colloids, 2013, 29(33),10549.
34 Zhang C, Xu Y J.ACS Applied Materials & Interfaces, 2013, 5(24),13353
35 Yang G, Yan W, Zhang Q, et al.Nanoscale, 2013, 5(24),12432.
36 Ma D, Li X, Guo Y, et al.Acta Photonica Sinica, 2017, 46(12), 128(in Chinese).
马德跃, 李晓霞, 郭宇翔,等.光子学报, 2017, 46(12),128
37 Meissner D, Memming R, Kastening B, et al.The Journal of Physical Chemistry, 1988, 92(12), 3476.
38 Meissner D, Lauermann I, Memming R, et al.The Journal of Physical Chemistry, 1988, 92(12), 3484.
39 Morrison S R.Electrochemistry at semiconductor and oxidized metal electrodes, Plenum Press, 1980.
40 Butler M A, Ginley D S.Journal of the Electrochemical Society, 1978, 125(2),228.
41 Xiang Q, Yu J, Jaroniec M.Journal of the American Chemical Society, 2012, 134(15),6575.
42 Ratcliff E L, Lee P A, Armstrong N R.Journal of Materials Chemistry, 2010, 20(13),2672.
43 Geng W, Zhao X, Liu H, et al.Journal of Physical Chemistry C, 2013, 117(20),10536.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[3] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[4] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[5] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[6] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[7] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[8] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[9] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[10] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[11] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[12] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[13] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[14] 陈军, 闵凡飞, 刘令云. 煤泥水中微细煤与高岭石颗粒间微观作用的密度泛函研究[J]. 材料导报, 2019, 33(16): 2677-2683.
[15] 黄宁岸, 赵梓俨, 邹彦昭, 周莹. 表面处理对Pt/Al2O3光催化氧化NO的影响[J]. 材料导报, 2019, 33(12): 1921-1925.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed