Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2633-2637    https://doi.org/10.11896/cldb.18060170
  无机非金属及其复合材料 |
双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性
涂盛辉1, 2,, 徐翀1, 2, 戴策1, 林立1, 彭海龙1, 杜军1, 2
1 南昌大学资源环境与化工学院,南昌 330031
2 南昌大学鄱阳湖环境与资源利用教育部重点实验室,南昌 330047
Preparation and Photocatalytic Activity for Hydrogen Evolution of Bimetallic Nano Ag/Cu on TiO2 Composite Photocatalysts
TU Shenghui1,2, XU Chong1,2, DAI Ce1, LIN Li1, PENG Hailong1, DU Jun1,2
1 School of Resources Environment and Chemical Engineering, Nanchang University, Nanchang 330031
2 Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330047
下载:  全 文 ( PDF ) ( 2481KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用化学还原法,选用具有锐钛矿相和金红石相的TiO2(P25)作为主催化剂,制备双金属纳米Ag/Cu@P25复合催化剂。以甘油为牺牲试剂,研究了不同Ag/Cu负载量对产氢活性的影响。实验结果表明,相比单金属负载和纯TiO2(P25),经双金属纳米Ag/Cu负载后,光催化剂的催化产氢活性有了很大提高。其在可见光下产氢活性达6 368.20 μmol·g-1·h-1,在全光谱下的产氢活性为25 811.51 μmol·g-1·h-1,约为纯TiO2(P25)(2 234.27 μmol·g-1·h-1)的11.55倍,同时在可见光下具有良好的光催化稳定性。通过X射线衍射(XRD)仪、比表面积测量(BET)仪、场发射扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)仪、紫外-可见漫反射光谱(DRS)仪对复合催化剂进行表征,研究了其微观形貌、结构及光学特性,同时对双金属纳米Ag/Cu@P25复合催化剂的反应机理进行了探究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
涂盛辉
徐翀
戴策
林立
彭海龙
杜军
关键词:  化学还原法  Ag/Cu@P25  产氢活性  光催化    
Abstract: Bimetallic nano Ag/Cu@P25 composite catalysts were prepared by chemical reduction method using TiO2 (P25) with anatase phase and rutile phase as main catalyst. Glycerol was used as a sacrificial reagent to investigate the effects of different Ag/Cu loading on hydrogen production. The experimental results show that, compared with the single metal load and pure TiO2(P25), the catalytic hydrogen production activity of the photocatalyst has been greatly increased after the bimetallic nano Ag/Cu loading, and the hydrogen production effect is 6 368.20 μmol·g-1·h-1 under visible light, and the hydrogen production activity under total light spectrum is 25 811.51 μmol·g-1·h-1, which is 11.55 times of pure TiO2 (P25) (2 234.27 μmol·g-1·h-1). It has good photocatalytic stability under the visible light. The micromorphology, structure and optical properties of the composite catalyst were investigated by X-ray diffractometer (XRD), specific surface area measuring instrument (BET) and field emission scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), ultraviolet-visible diffuse reflectance spectroscopy (DRS), and the possible reaction mechanism of the bimetallic nano Ag/Cu@P25 composite catalyst was explored.
Key words:  chemical reduction method    Ag/Cu@P25    hydrogen production activity    photocatalysis
                    发布日期:  2019-07-12
ZTFLH:  O643  
基金资助: 国家自然科学基金(31660482;51162022)
作者简介:  涂盛辉,南昌大学教授,硕士研究生导师。1987年华东化工学院化学物理专业本科毕业,2008年南昌大学工业催化专业硕士研究生毕业,2014年博士研究生毕业于南昌大学环境工程学院。其团队主要研究方向包括:催化氧化技术与纳米功能材料的化学、物理及性能研究,化工新材料技术、废水处理及综合利用技术、固废处理及循环利用利用技术、天然产物分离提取技术、节能减排技术。主持完成省部级科技项目2项,参加完成国家级科研项目3项,主持完成企业技术服务类项目88项,在EI和CSCD期刊上发表学术论文26篇。
引用本文:    
涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
TU Shenghui, XU Chong, DAI Ce, LIN Li, PENG Hailong, DU Jun. Preparation and Photocatalytic Activity for Hydrogen Evolution of Bimetallic Nano Ag/Cu on TiO2 Composite Photocatalysts. Materials Reports, 2019, 33(16): 2633-2637.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060170  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2633
[1]Zielińska-Jurek A.Journal of Nanomaterials,2014,2014,1.
[2] Linsebigler A L, Lu G, Yates J T. Chemical Reviews, 1995,95,735.
[3] Jain P K, Lee K S, El-Sayed I H, et al.The Journal of Physical Chemistry B,2006,110(14),7238.
[4] Cong Y, Zhang J, Chen F, et al. The Journal of Physical Chemistry C,2007,111(19),6976.
[5] Deng L, Wang S, Liu D, et al. Catalysis Letters, 2009,129(3-4),513.
[6] Nasir M, Xi Z, Xing M, et al. The Journal of Physical Chemistry C, 2013,117(18),9520.
[7] Zhao W, Ai Z, Dai J, et al. Plos One, 2014,9(8),e103671.
[8] Wang Q, Qiao J, Xu X, et al. Materials Letters, 2014,131,135.
[9] Xu L, Zhang F, Song X, et al. Journal of Materials Chemistry A, 2015,3(11),5923.
[10] Xu S, Ng J, Zhang X, et al. International Journal of Hydrogen Energy, 2010,35(11),5254.
[11] Zulfiqar M, Omar A A. Advanced Materials Research, 2016,1133,501.
[12] Sun X, Dai W, Wu G, et al. Chemical Communications, 2015,51(72),13779.
[13] Zhang J, Xu Q, Feng Z, et al. Angewandte Chemie International Edition, 2008,47(9),1766.
[14] Cermenati L, Dondi D, Fagnoni M, et al. Tetrahedron, 2003,59(34),6409.
[15] Yang L, Wang F, Shu C, et al. Scientific Reports, 2016,6,21617.
[16] Scanlon D O, Dunnill C W, Buckeridge J, et al. Nature Materials, 2013,12(9),798.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[4] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[5] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[6] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[7] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[8] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[9] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[10] 黄宁岸, 赵梓俨, 邹彦昭, 周莹. 表面处理对Pt/Al2O3光催化氧化NO的影响[J]. 材料导报, 2019, 33(12): 1921-1925.
[11] 安伟佳, 田玲玉, 芮玉兰, 高雅萌, 崔文权. Ag@AgCl/Bi2WO6复合光催化剂的制备及可见光催化性能[J]. 材料导报, 2019, 33(12): 1932-1938.
[12] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[13] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[14] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
[15] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed