Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2638-2643    https://doi.org/10.11896/cldb.18070074
  无机非金属及其复合材料 |
氧化石墨烯作为润滑油添加剂的分散稳定性
仇磊1, 陈鼎1, 2,, 朱莉莉1, 陈耀彤1, 王思远1, 冯鹏飞2
1 湖南大学材料科学与工程学院,长沙 410082
2 湖南大学机械与运载工程学院,汽车车身先进设计制造国家重点实验室,长沙 410082
Dispersion Stability of Graphene Oxide as Lubricant Additive
QIU Lei1, CHEN Ding1,2, ZHU Lili1, CHEN Yaotong1, WANG Siyuan1, FENG Pengfei2
1 College of Materials Science and Engineering, Hunan University, Changsha 410082
2 State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 3044KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作在实验室自主设计的超声辅助球磨、微波辅助球磨试验装置基础上,采用不同的分散方法(表面改性分散,分散剂分散,表面改性、分散剂分散)将氧化石墨烯(GO)分散于基础油PAO6中得到GO润滑油。采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)仪等对改性前后的GO进行表征,通过紫外可见分光光度计(UV-Vis)和Zeta电位仪检测分散稳定性,并对其分散机理进行讨论。研究结果表明,GO经表面改性、分散剂分散复合处理后,其稳定性比表面改性分散和分散剂分散分别提高了44.8%和35.5%。GO经表面改性后,表面含氧官能团减少,润湿性得到提高,表面接枝亲油性长碳链烷基伸入到基础油中,提高了GO的分散稳定性。分散剂吸附在改性氧化石墨烯(MGO)表面,形成稳定的双电层效应,纳米MGO颗粒产生静电排斥作用,形成位阻层,阻碍颗粒的相互碰撞和团聚,从而能稳定分散于基础润滑油中。   本工作不仅成功将GO稳定分散于基础油PAO6中,而且验证了表面改性、分散剂分散复合处理对提高GO在基础油中的分散稳定性效果最好,且分散剂的最佳浓度为0.6%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仇磊
陈鼎
朱莉莉
陈耀彤
王思远
冯鹏飞
关键词:  氧化石墨烯(GO)  超声辅助球磨  微波辅助球磨  表面改性  分散剂  分散稳定性    
Abstract: he work was based on te laboratory-designed ultrasound-assisted ball milling and microwave-assisted ball milling test equipment, the GO lubricant oil was obtained by dispersing the GO in the base oil PAO6 using different dispersion methods (surface modification and dispersion, dispersant dispersion, surface modification and dispersant dispersion). Examinations of the surface features of the GO were conducted by XRD, SEM, TEM etc. before and after modification. The dispersion stability of the GO in the base oil was measured by ultraviolet-visible spectrophotometer (UV-Vis) and Zeta potential, and the dispersion mechanism was analyzed. The results indicated that, compared with surface modification dispersion and dispersant dispersion, the combination of surface modification and dispersant dispersion improved the stability of the GO by 44.8% and 35.5%, respectively. After surface modification of GO, the oxygen-containing functional groups on the surface were reduced, the wettability was improved, and the surface was grafted with a lipophilic long-chain alkyl group, which penetrated into the base oil to improve the dispersion stability of the GO. The dispersant was adsorbed on the surface of the modified graphene oxide (MGO) to form a stable double-layer effect. The nano-MGO particles could generate electrostatic repulsion and form a steric hindrance layer to prevented the particles from colliding with each other and agglomerates which could help the MGO disperse in the basic lubrication oil stably.    The work not only dispersed the GO in the base oil PAO6 successfully, but also concluded that the combination of surface modification and dispersant dispersion had the best effect on improving the dispersion stability of GO in the base oil, and the optimal concentration of the dispersant was 0.6%.
                    发布日期:  2019-07-12
ZTFLH:  TH117.2  
作者简介:  仇磊,2012年获得南昌航空大学学士学位,后进入湖南大学陈鼎教授课题组攻读硕士学位。主要从事氧化石墨烯的表面改性及其在润滑油中的分散稳定性研究工作。
陈鼎,湖南大学教授,博士研究生导师。2003年中南大学博士毕业,2006年获得日本东北大学博士学位。在国内外发表论文200余篇,国际英文学术SCI期刊发表论文130篇,获国家发明专利10项。其团队主要研究方向包括:汽车、高铁、轨道交通和航空用高性能(高强、高塑性和阻燃)镁、铝合金的制备与加工;金属材料疲劳性能研究;航空发动机轴承用石墨烯基高性能耐腐蚀宽温润滑脂的制备。获奖情况:液体金属与合金的固体雾化过程原理研究获中国机械工业协会三等奖(2004);固液反应球磨制备金属间化合物的微细粉末技术研究获中国机械工业协会二等奖(2008);大尺寸有色合金多孔坯楔压致密化成型研究获中国机械工业协会二等奖(2010);教育部新世纪优秀人才支持计划(2010);湖南省“121”人才计划(2010);湖南省自然科学杰出青年基金资助计划(2014)。
引用本文:    
仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
QIU Lei, CHEN Ding, ZHU Lili, CHEN Yaotong, WANG Siyuan, FENG Pengfei. Dispersion Stability of Graphene Oxide as Lubricant Additive. Materials Reports, 2019, 33(16): 2638-2643.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070074  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2638
[1] Huang B R, Chan H W, Jou S, et al. Applied Surface Science, 2016, 362, 250.
[2] Pu J, Mo Y, Wan S, et al. Chemical Communications, 2013, 50(4), 469.
[3] Yang G, Su J, Gao J, et al. Journal of Supercritical Fluids, 2013, 73(1), 1.
[4] Olle M, Ceballos G, Serrate D, et al. Nano Letters, 2012, 12(9), 4431.
[5] Ramanathan T, Abdala A A, Stankovich S, et al. Nature Nanotechnology, 2008, 3(6), 327.
[6] Park S, Ruoff R S. Nature Nanotechnology, 2009, 4(4), 217.
[7] Liu Xue, Cai Changfeng, Ding Jiawei. Journal of Chongqing University of Technology (Natural Science), 2017, 31(7), 92. (in Chinse).
刘学, 蔡昌凤, 丁佳炜. 重庆理工大学学报(自然科学), 2017, 31(7), 92.
[8] Zhang Y, Tan Y W, Stormer H L, et al. Nature, 2005, 438(7065), 201.
[9] Schedin F, Geim A K, Morozov S V, et al. Nature Materials, 2007, 6(9), 652.
[10] Kim K S, Lee H J, Lee C, et al. ACS Nano, 2011, 5(6), 5107.
[11] Berman D, Erdemir A, Sumant A V. Materials Today, 2014, 17(1), 31.
[12] Ou J, Wang J, Liu S, et al. Langmuir, 2010, 26(20), 15830.
[13] Hou X, Yang C, He J, et al. Industrial & Engineering Chemistry Research, 2015, 54(17), 4773.
[14] Berman D, Erdemir A, Sumant A V. Carbon, 2013, 59(8), 167.
[15] Patil A J, Vickery J L, Scott T B, et al. Advanced Materials, 2009, 21(31), 3159.
[16] Chang H, Wang G, Yang A, et al. Advanced Functional Materials, 2010, 20(17), 2893.
[17] Allen M J, Tung V C, Kaner R B. Chemical Reviews, 2010, 110(1), 132.
[18] Fan X, Wang L. Journal of Colloid & Interface Science, 2015, 452, 98.
[19] Huang H D, Tu J P, Gan L P, et al. Wear, 2006, 261(2), 140.
[20] Lu K. Ceramics International, 2008, 34(6), 1353.
[21] Lin J, Wang L, Chen G. Tribology Letters, 2011, 41(1), 209.
[22] Zhang W, Zhu H W, Di Z C, et al. Nanoscience & Nanotechnology, 2011(1), 5(in Chinse).
张伟, 朱宏伟, 狄泽超, 等.纳米科技, 2011(1), 5.
[23] Lei Z, Cai Z, Zhang Z, et al. Chinese Journal of Materials Research, 2016(1), 57(in Chinse).
赵磊, 蔡振兵, 张祖川, 等. 材料研究学报, 2016(1), 57.
[24] Jia Z, Pang X, Li H, et al. Tribology International, 2015, 90, 240.
[25] Chen C S, Chen X H, Xu L S, et al. Carbon, 2005, 43(8), 1660.
[26] Guo Y, Sun X, Liu Y, et al. Carbon, 2012, 50(7), 2513.
[27] Li P, Xu Z, Liu Z, et al. Nature Communications, 2011, 6, 5716.
[28] Yan Y, Yin Y X, Guo Y G, et al. Advanced Energy Materials, 2014, 4(8), 1079.
[29] Shih C J, Lin S, Sharma R, et al. Langmuir, 2012, 28(1), 235.
[30] Lord R C. Journal of the American Chemical Society, 1990, 87(5), 1155.
[31] Stankovich S, Piner R D, Nguyen S B T, et al. Carbon, 2006, 44(15), 3342.
[32] Naebe M, Wang J, Amini A, et al. Scientific Reports, 2014, 4(3), 4375.
[33] Li D, Müller M B, Gilje S, et al. Nature Nanotechnology, 2008, 3(2), 101.
[34] Liu J F, Chen H H, Xia Z B, et al. Synthetic Materials Aging and Application, 2010, 39(2), 36(in Chinse).
刘景富, 陈海洪, 夏正斌, 等.合成材料老化与应用, 2010, 39(2), 36.
[35] Han G S, Chen D, Li X. Advanced Powder Technology, 2017, 28(4), 1136.
[36] Chen D, Zhang Y Z, Chen B Y et al. Industrial and Engineering Chemistry Research, 2013, 52(39), 14179.
[1] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[2] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[3] 司伟, 丁超, 潘伟. 聚丙烯酸铵和柠檬酸铵分散剂对钇铝石榴石陶瓷透光率的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1209-1212.
[4] 邢小光, 许金余, 白二雷, 朱靖塞, 王谕贤. 纳米Fe2O3水泥基复合材料制备的响应曲面研究[J]. CLDB, 2018, 32(8): 1367-1372.
[5] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[6] 沈海洋, 王正洲. 钢渣的表面改性及其在橡胶中应用研究[J]. 材料导报, 2018, 32(6): 1000-1003.
[7] 吴家宇, 李丹, 康龙, 冉奋. 电化学诱导表面引发原子转移自由基聚合构筑离子型聚醚砜膜功能表面[J]. 《材料导报》期刊社, 2018, 32(4): 549-554.
[8] 胡晶, 谢国治, 顾家新, 谌静, 谭鑫, 王瑞, 邢贝贝. 多元助剂改性羰基铁粉雷达波低频吸波性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 520-524.
[9] 刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
[10] 高瑞军, 姚燕, 吴浩, 王玲. 纳米复合粉体分散剂的制备及其分散性能[J]. 材料导报, 2018, 32(22): 3868-3874.
[11] 黄全江,南君,王三反,李欣怡,邹信,张学敏. 苯磺酸甜菜碱表面改性阳离子交换膜[J]. 《材料导报》期刊社, 2018, 32(2): 203-206.
[12] 周璐, 马红和, 马素霞, 杜慧娟. 用于太阳能集热介质的纳米铜制备技术与铜纳米流体性能综述[J]. 材料导报, 2018, 32(15): 2576-2583.
[13] 杨平军,袁剑民,何莉萍. 碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展[J]. 《材料导报》期刊社, 2017, 31(7): 129-136.
[14] 张勇,王雄禹,于静,曹维成,冯鹏发,焦生杰. 高温应用钼及钼合金表面改性研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 83-87.
[15] 王晓东, 云斯宁, 张太宏, 尹洪峰, 徐德龙. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 77-83.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed