Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 83-87    https://doi.org/10.11896/j.issn.1005-023X.2017.07.013
  材料综述 |
高温应用钼及钼合金表面改性研究进展*
张勇1,2,3,王雄禹1,于静1,曹维成2,冯鹏发2,焦生杰3
1 长安大学材料科学与工程学院,西安 710064;
2 金堆城钼业股份有限公司技术中心,西安 710077;
3 长安大学机械工程博士后科研流动站,西安 710064
Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature
ZHANG Yong1,2,3, WANG Xiongyu1, YU Jing1, CAO Weicheng2,FENG Pengfa2, JIAO Shengjie3
1 School of Materials Science and Engineering, Chang’an University, Xi’an 710064;
2 Technical Center, Jinduicheng Molybdenum Co., Ltd., Xi’an 710077;
3 Postdoctoral Scientific Research Station of Mechanical Engineering, Chang’an University,Xi’an 710064
下载:  全 文 ( PDF ) ( 1315KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钼及钼合金因具有高熔点、高硬度、力学性能优异等优点,被广泛应用于军工、航空和航天等领域。但钼及钼合金在高温使用时存在抗氧化、抗烧蚀和耐磨损性能较差等缺陷,严重影响了钼及钼合金的高温使用性能。研究发现,通过表面改性能有效解决上述问题。首先提出了高温应用钼及钼合金表面改性涂层需满足的基本要求,系统地综述了改性涂层在改善高温应用钼及钼合金抗氧化、抗烧蚀和耐磨损性能方面的研究进展,介绍了常见改性涂层的制备方法,并指出了目前该研究领域存在的问题及今后的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张勇
王雄禹
于静
曹维成
冯鹏发
焦生杰
关键词:  高温应用  钼及钼合金  表面改性    
Abstract: Molybdenum and molybdenum alloys have been widely used in military, aerospace and other fields because of their high melting point, high hardness and excellent mechanical properties. However, the high temperature application properties of molybdenum and molybdenum alloys has been seriously affected by the defects such as bad oxidation resistance, low ablation resistance and poor wear resistance at elevated temperature. It is found that the surface modification can effectively solve the above problems. In this paper, the basic requirements of surface modification coating for high temperature application molybdenum and molybdenum alloy are proposed firstly. The main research progress on the improved oxidation resistance, ablation resistance and wear resistance of surface modified molybdenum and molybdenum alloys at elevated temperature is systematically reviewed. The coating preparation me-thods are introduced, and the existing problems and development prospects of research in this field are also proposed.
Key words:  high temperature application    molybdenum and molybdenum alloys    surface modification
               出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TG146.4  
基金资助: *陕西省自然科学基金(2016JQ5064);材料成形与模具技术国家重点实验室开放课题研究基金(P2016-13);中央高校基本科研业务费专项资金(310831151079)
作者简介:  张勇:男,1981年生,博士,副教授,研究方向为新能源材料及器件的制备与性能表征E-mail:chdzhangyong@chd.edu.cn
引用本文:    
张勇,王雄禹,于静,曹维成,冯鹏发,焦生杰. 高温应用钼及钼合金表面改性研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 83-87.
ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature. Materials Reports, 2017, 31(7): 83-87.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.013  或          http://www.mater-rep.com/CN/Y2017/V31/I7/83
1 Ju Yanpeng, Wang Aiqin. Current research status of Mo alloys[J]. Powder Metall Ind,2015, 25(4):58(in Chinese).
居炎鹏, 王爱琴. 钼合金研究现状[J]. 粉末冶金工业,2015,25(4):58.
2 Gao Mingchuan,Tong Xiangyang,Wang Hongsheng.Research progress of Mo-based coatings fabricated by thermal spray technology[J].China Molybdenum Ind,2014,38(6):41(in Chinese).
高名传,童向阳,汪洪生. 热喷涂法制备钼系涂层的研究进展[J]. 中国钼业,2014,38(6):41.
3 Shi Jun, Liu Ning, et al. Progress of research on molybdenum and its alloy[J]. Thermal Treat,2014,29(5):19(in Chinese).
石俊, 刘宁, 等. 钼及钼合金研究的进展[J]. 热处理,2014,29(5):19.
4 Fan Jinglian, Lu Mingyuan, Cheng Huichao. Effect of alloying elements Ti, Zr on the property and microstructure of molybdenum[J]. Int J Refractory Met Hard Mater,2009,27:78.
5 Wang Jiteng, Wang Juan, Li Yajiang, et al. Progress of research on welding for molybdenum alloys [J]. High Temperature Mater Prog,2014,33(3):193.
6 Cheng Huichao, Fan Jinglian, Li Pengfei, et al. Oxidation resis-tance and ablation behavior of refractory alloy at high temperature[J]. Chin J Nonferrous Met,2011,21(3):570(in Chinese).
成会朝, 范景莲, 李鹏飞, 等. 难熔钼合金的高温抗氧化和烧蚀行为[J]. 中国有色金属学报,2011,21(3):570.
7 Chen Chuang, Wei Shizhong, Zhang Guoshang, et al. Current research and application development of molybdenum alloy[J]. Rare Met Cem Carbides,2012,40(5):45(in Chinese).
陈闯, 魏世忠, 张国赏, 等. 钼合金的研究现状与应用进展[J]. 稀有金属与硬质合金, 2012,40(5):45.
8 Riedl H, Vieweg A, Limbeck A, et al. Thermal stability and mechanical properties of boron enhanced Mo-Si coatings[J]. Surf Coat Technol,2015,280:282.
9 Qu Jianglong. Study of B, Y-modified pack Si deposition coating on molybdenum[D]. Xi’an: Chang’an University,2014(in Chinese).
曲江龙. 钼表面B, Y改性包埋渗Si涂层研究[D]. 西安: 长安大学,2014.
10 李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001.
11 Wang Yi, Wang Dezhi, Sun Aokui, et al. The advance on the oxidation resistance coating of molybdenum and its alloys[J].Mater Rev: Rev,2012,26(1):137(in Chinese).
汪异, 王德志, 孙翱魁, 等. 钼及其合金氧化防护涂层的研究进展[J]. 材料导报: 综述篇,2012,26(1):137.
12 Xie Nengping. Study on preparation and properties of silicides coa-ting on the molybdenum surface by in-situ synthesizing[D]. Xiangtan: Hunnan University of Science and Technology,2011(in Chinese).
谢能平. 钼表面原位合成硅化物涂层的制备工艺与性能研究[D]. 湘潭: 湖南科技大学,2011.
13 Song Rui, Wang Kuaishe, Hu Ping, et al. Present situation of anti-oxidation coatings preparation on molybdenum and its alloys[J]. Mater Rev: Rev,2016,30(5):69(in Chinese).
宋瑞, 王快社, 胡平, 等. 钼及钼合金表面高温抗氧化涂层研究现状[J]. 材料导报: 综述篇,2016,30(5):69.
14 Chakraborty S P, Banerjee S, Sharma I G, et al. Development of sili-cide coating over molybdenum based refractory alloy and its characterization [J]. J Nuclear Mater,2010, 403(1-3):152.
15 Wu Heng, Li Hejun, Wang Yongjie, et al. Effect of deposition temperature on microstructures and properties of MoSi2 coatings prepared by low pressure chemical vapor deposition[J]. J Inorg Mater,2009,24(2):392(in Chinese).
吴恒, 李贺军, 王永杰, 等. 低压沉积温度对MoSi2涂层微观结构与性能影响[J]. 无机材料学报,2009,24(2):392.
16 Gu Siyong, Zhang Houan, Xie Nengping. Oxidation property of MoSi2/Si3N4 coating on Mo substrate[J]. J Xiamen University of Technology,2011,19(2):18(in Chinese).
古思勇, 张厚安, 谢能平. 金属钼表面MoSi2/Si3N4涂层的氧化性能研究[J]. 厦门理工学院学报,2011,19(2):18.
17 Nicholls J R, Simms N J, Chan W Y, et al. Smart overlay coatings-concept and practice[J]. Surf Coat Technol,2002,149(2-3):236.
18 Huang Can, Zhang Yongzhong, Rui Vilar. Microstructure and anti-oxidation behavior of laser clad Ni-20Cr coating on molybdenum surface[J]. Surf Coat Technol,2010,205(3):835.
19 Zhang Wei, Gao Lianze, Xie Qitian. The experimental study of the effect of the structural factors of the nozzle on the nozzle throat depo-sition[J]. J Harbin Shipbuilding Engineering Institute,1983,4(1):25(in Chinese).
张唯, 高连泽, 谢其钿. 喷管结构因素对喉衬沉积影响的实验研究[J]. 哈尔滨船舶工程学院学报,1983,4(1):25.
20 Wei Yanjun. Research on ablation charateristics of extended range projectile engine nozzle[D]. Shenyang: Shenyang Ligong University,2014(in Chinese).
魏岩峻. 增程弹发动机喷管烧蚀特性研究[D]. 沈阳: 沈阳理工大学,2014.
21 Jiang Fan, Gao Xinyi. The SEM examination of molybdenum nozzle and the investigation of erosion mechanism[J]. Acta Armam,1984 (3):31(in Chinese).
蒋凡, 高新宜. 钼喷管的SEM检验及烧蚀机理的探讨[J]. 兵工学报,1984(3):31.
22 Chang Chun, Yu Dajiang, Liu Shaobin, et al. Microstructures and corrosion resistance of molybdenum-alumina materials[J]. J Chin Ceram Soc,2008,36(8):1124(in Chinese).
常春, 余大江, 刘少斌, 等. Mo/Al2O3材料的微观结构和抗腐蚀性[J]. 硅酸盐学报,2008,36(8):1124.
23 Carreri F C, Oliveira R M, Oliveira A C, et al. Phase formation and mechanical/tribological modification induced by nitrogen high temperature plasma based ion implantation into molybdenum[J]. Appl Surf Sci,2014,310:305.
24 Sun Jia, Fu Qiangang, Guo Liping, et al. Effect of filler on the oxidation protective ability of MoSi2 coating for Mo ubstrate by halide activated pack cementation[J]. Mater Des,2016, 92:602.
25 Yoon J K, Kim G H, Byun J Y, et al. Effect of Cl/H input ratio on the growth rate of MoSi2 coatings formed by chemical vapor deposition of Si on Mo substrate from SiCl4-H2 precursor gases[J]. Surf Coat Technol,2003,172(2-3):176.
26 Weis S, Uhlig T, Wagner G, et al. High-temperature corrosion and radiation characteristics of thermal sprayed molybdenum disilicide-based coatings[C]//18th Chemnitz Seminar on Materials Enginee-ring. Chemnitz,2016.
27 Hou Fengliang, Ni Feng, Cui Yansui, et al. Abrasive wear properties of Al2O3/Mo composite[J].Acta Mater Compos Sin,2011,28(4):136(in Chinese).
侯风亮, 倪峰, 崔延遂, 等. Al2O3/Mo复合材料的磨料磨损性能[J]. 复合材料学报, 2011,28(4):136.
28 Gu Siyong, Zhang Houan, Wu Yihui, et al. Preparation of Mo-C-N-Si coating on Mo substrate and its oxidation property at high tempe-rature[J]. Rare Met Mater Eng,2014,43(5):1219(in Chinese).
古思勇, 张厚安, 吴艺辉, 等. 金属钼表面Mo-C-N-Si涂层的制备及其高温氧化特性[J]. 稀有金属材料与工程,2014,43(5):1219.
[1] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[2] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[3] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[4] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[5] 沈海洋, 王正洲. 钢渣的表面改性及其在橡胶中应用研究[J]. 材料导报, 2018, 32(6): 1000-1003.
[6] 刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
[7] 吴家宇, 李丹, 康龙, 冉奋. 电化学诱导表面引发原子转移自由基聚合构筑离子型聚醚砜膜功能表面[J]. 《材料导报》期刊社, 2018, 32(4): 549-554.
[8] 胡晶, 谢国治, 顾家新, 谌静, 谭鑫, 王瑞, 邢贝贝. 多元助剂改性羰基铁粉雷达波低频吸波性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 520-524.
[9] 黄全江,南君,王三反,李欣怡,邹信,张学敏. 苯磺酸甜菜碱表面改性阳离子交换膜[J]. 《材料导报》期刊社, 2018, 32(2): 203-206.
[10] 杨平军,袁剑民,何莉萍. 碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展[J]. 《材料导报》期刊社, 2017, 31(7): 129-136.
[11] 王晓东, 云斯宁, 张太宏, 尹洪峰, 徐德龙. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 77-83.
[12] 沈佳丽, 石畅, 施冬健, 章朱迎, 陈明清. 多巴胺对骨修复材料表面改性的研究进展[J]. 《材料导报》期刊社, 2017, 31(21): 54-61.
[13] 毕玉保, 王慧芳, 赵万国, 梁峰, 张海军. 含碳浇注料用鳞片石墨的表面改性技术综述*[J]. 《材料导报》期刊社, 2017, 31(15): 108-114.
[14] 巴志新, 陈永俊, 董强胜, 马彪, 吕小雨. 镁合金表面水滑石膜耐蚀性研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 144-150.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed