Progress on the Research of In-vivo Degradation Behavior and Surface Modification of Biomedical Mg Alloys
ZHENG Yang1,2,*, ZHANG Xuan2, LU Jia2, HE Donglei3, SU Zhenyu2, NIU Wei2, YU Zhenyang2, SUN Ronglu2, LI Yan3,4,*
1 School of Aeronautics and Astronautics, Tiangong University, Tianjin 300387, China 2 School of Mechanical Engineering, Tiangong University, Tianjin 300387, China 3 School of Materials Science and Engineering, Beihang University, Beijing 100191, China 4 Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China
Abstract: Biomedical Mg alloys are ideal temporary implants in non-important bearing sites in human body due to their good biocompatibility, excellent comprehensive mechanical properties and unique biodegradability. However, fast degradation of Mg alloys in the physiological environment severely restricts their clinical applications. The key solution to solve the problem is exploring more suitable implantation sites for Mg alloys and synchronizing their degradation rate with tissue healing process via appropriate surface modification methods. In recent years, researchers at home and abroad systematically studied their degradation mechanism in different in-vivo environments. They also conducted various surface mo-dification methods to regulate their corrosion behavior by preparing coatings with suitable composition and microstructure. First of all, this paper analyzes the effects of physiological environment (including kinds, compositions, concentrations, flow conditions of the corrosive media) on the degradation behavior of Mg alloys. Then, this paper summarizes the degradation behavior of Mg alloys in different implantation sites of orthopedics, cardiovascular, gastroenterology, urology departments. Following that, this paper reviews the research progress in degradation behavior regulation of Mg alloys using various kinds of coatings such as metallic coatings, inorganic non-metallic coatings, organic polymer coatings, biological functional coatings and composite coatings. Finally, this paper puts forward some development directions of bio-functional coatings based on different specific implantation sites, which could provide reference for promoting the clinical applications of Mg alloys.
通讯作者:
*郑洋,天津工业大学讲师、硕士研究生导师。2016年7月博士毕业于北京航空航天大学材料科学与工程学院,2016—2017年就职于中国石油天然气管道局,2017—2019年在河北工业大学机械工程学院进行博士后研究工作,2019年11月入职天津工业大学机械工程学院。主持天津市自然科学基金青年项目、河北省高层次人才资助项目;参研国家重点研发计划“战略性国际科技创新合作”重点专项。入选天津市高校青年后备人才培养计划,主要从事材料连接技术、材料表面改性技术的研究工作。近年来,在Corrosion Science、Materials Science and Engineering C、Progress in Natural Science、Materials International、Applied Surface Science等期刊上发表SCI文章20余篇。 zhengyang@tiangong.edu.cn; 李岩,北京航空航天大学教授、博士研究生导师,研究方向为生物医用材料和金属智能材料。入选教育部新世纪优秀人才和北京市科技新星。担任中国生物材料学会医用金属材料分会常务委员、中国腐蚀与防护学会医用金属腐蚀控制分会副主任委员、中国金属学会功能材料分会委员。主持国家重点研发计划、国家自然科学基金项目等科研项目多项。发表SCI论文130余篇,获国家发明专利授权30余项,获2016年度国家科学技术进步二等奖。 liyan@buaa.edu.cn
引用本文:
郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
ZHENG Yang, ZHANG Xuan, LU Jia, HE Donglei, SU Zhenyu, NIU Wei, YU Zhenyang, SUN Ronglu, LI Yan. Progress on the Research of In-vivo Degradation Behavior and Surface Modification of Biomedical Mg Alloys. Materials Reports, 2023, 37(19): 22020134-16.
1 Zeng R C, Cui L Y, Ke W. Acta Metallurgica Sinica, 2018, 54(9), 1215 (in Chinese). 曾荣昌, 崔蓝月, 柯伟. 金属学报, 2018, 54(9), 1215. 2 Zheng Y F, Liu J N. Materials China, 2020, 39(2), 92 (in Chinese). 郑玉峰, 刘嘉宁. 中国材料进展, 2020, 39(2), 92. 3 Kiani F, Wen C, Li Y. Acta Biomaterialia, 2020, 103, 1. 4 Zhang X N, Zuo M C, Zhang S X, et al. Acta Metallurgica sinica, 2017, 53(10), 1215 (in Chinese). 张小农, 左敏超, 张绍翔, 等. 金属学报, 2017, 53(10), 1215. 5 Yin L, Huang H, Yuan G Y, et al. Materials China, 2019, 38(2), 126 (in Chinese). 尹林, 黄华, 袁广银, 等. 中国材料进展, 2019, 38(2), 126. 6 Zheng Y F, Gu X N, Witte F, et al. Materials Science and Engineering R, 2014, 77(2), 1. 7 Emmanuel M M, Lucien V. Journal of Magnesium and Alloys, 2020, 8(3), 667. 8 Liang M J, Wu C, Ma Y, et al. Materials Science and Engineering C, 2021, 119, 111521. 9 Zhang Z Q, Wang L, Zeng M Q, et al. Bioactive Materials, 2020, 5(2), 398. 10 Liu S Y, Wang B. Journal of Materials Research and Technology, 2020, 9(3), 6612. 11 Han L Y, Li X, Bai J, et al. Materials Chemistry and Physics, 2018, 217, 300. 12 Emmanuel M M, Lucien V, Luis J. Revista De Metalurgia, 2020, 52(2), e166. 13 Wu H, Wu G S, Chu P K. Surface & Coatings Technology, 2016, 306, 6. 14 Zhang S Y, Bi Y Z, Li J Y, et al. Bioactive Materials, 2017, 2(2), 53. 15 Sekar P, Narendranath S, Desai V. Journal of Magnesium and Alloys, 2021, 9(4), 1147. 16 Wang J, Wu Y, Li H, et al. Biomaterials, 2018, 157, 86. 17 Liu J N, Lin Y L, Bian D, et al. Acta Biomaterialia, 2019, 98, 50. 18 Yang L, Liu L, Peng W, et al. Biomaterials, 2016, 106, 250. 19 Ha T, Jiang X, Zhang K, et al. Journal of Medical Biomechanics, 2019, 34(1), 77 (in Chinese). 哈彤, 江雄, 张阔, 等. 医用生物力学, 2019, 34(1), 77. 20 Holweg P, Berger L, Cihova M, et al. Acta Biomaterialia, 2020, 113, 646. 21 Stürznickel J, Delsmann M M, Jungesblut O D, et al. Injury, 2021, 52(8), 2265. 22 Xie K, Wang L, Guo Y, et al. Journal of Orthopaedic Translation, 2021, 27, 96. 23 Bian D, Zhou X, Liu J, et al. Acta Biomaterialia, 2021, 124, 382. 24 Mao L, Zhou H, Chen L, et al. Journal of Alloys and Compounds, 2017, 720, 245. 25 Kandala B, Zhang G, Lcorriveau C, et al. Bioactive Materials, 2021, 6(6), 1663. 26 Peng H, Fan K, Zan R, et al. Acta Biomaterialia, 2021, 128, 514. 27 El-Kamel R S, Ghoneim A A, Fekry A M. Materials Science and Engineering C, 2019, 103, 109780. 28 Gao M, Na D, Ni X Q, et al. Bioactive Materials, 2021, 6(1), 55. 29 Huang Q L, Liu L, Wu H, et al. Materials Science and Engineering C, 2020, 106, 110158. 30 Zhang S Y, Zheng Y, Zhang L M, et al. Materials Science and Enginee-ring C, 2016, 68, 414. 31 Tie D, Liu H N, Guan R G, et al. Acta Biomaterialia, 2020, 116(2), 415. 32 Li Z M, Liu G, Zhang Q H, et al. Intervent Radiol, 2018, 27(4), 353 (in Chinese). 李宗明, 刘耿, 张全会, 等. 介入放射学杂志, 2018, 27(4), 353. 33 Bao G, Fan Q Q, Ge D F, et al. Acta Biomaterialia, 2019, 97, 623. 34 Si J W, Shen H Z, Miao H W, et al. Journal of Magnesium and Alloys, 2021, 9(1), 281. 35 Ding P F, Liu Y C, He X H, et al. Bioactive Materials, 2019, 4, 236. 36 Yu X, Li D Y, Liu Y C, et al. Materials Science and Engineering C, 2020, 115, 111093. 37 Yin Z Z, Qi W C, Zeng R C, et al. Journal of Magnesium and Alloys, 2020, 8(1), 42. 38 Heimann R B. Surface & Coatings Technology, 2021, 405, 126521. 39 Hu Y J, Bi Y Z, He D L, et al. Surface Technology, 2019, 48(9), 11 (in Chinese). 胡怡娟, 毕衍泽, 何东磊, 等. 表面技术, 2019, 48(9), 11. 40 Liu X Y, Peng F. Journal of the Chinese Ceramic Society, 2017, 45(10), 1421 (in Chinese). 刘宣勇, 彭峰. 硅酸盐学报, 2017, 45(10), 1421. 41 Rahim S A, Joseph M A, Sampath Kumar T S, et al. Frontiers in Materials, 2022, 9, 848980. 42 Zheng Y, Li Y, Chen J H, et al. Progress in Natural Science:Materials International, 2014, 24(5), 547. 43 Zheng Y, Ma Y L, Zang L B, et al. Materials and Corrosion, 2019, 70(12), 2292. 44 Zheng Y, Zang L B, Bi Y Z, et al. Coatings, 2018, 8(8), 261. 45 Dong Q S, Jia Y Q, Ba Z X, et al. Journal of Alloys and Compounds, 2021, 873, 159739. 46 Zhang D F, Wei B B, Wu Z T, et al. Surface & Coatings Technology, 2016, 303, 94. 47 Zhou B Y, Jia Y Q, Song H, et al. Transactions of Materials and Heat Treatment, 2019, 40(10), 135 (in Chinese). 周必元, 郏永强, 宋浩, 等. 材料热处理学报, 2019, 40(10), 135. 48 Zhang D F, Qi Z B, Wei B B, et al. Materials Letters, 2017, 190, 181. 49 Sun J Y, Cai S, Wei J L, et al. Journal of the Chinese Ceramic Society, 2020(6), 810. (in Chinese). 孙佳月, 蔡舒, 韦洁玲, 等. 硅酸盐学报, 2020(6), 810. 50 Shen S B, Cai S, Bao X G, et al. Chemical Engineering Journal, 2018, 339, 7. 51 Zhou W C, Hu Z R, Wang T L, et al. Colloids and Surfaces B:Biointerfaces, 2020, 186, 110710. 52 Wen S F, Liu X L, Ding J H, et al. Progress in Natural Science:Materials International, 2021, 31(2), 324. 53 Hiromoto S, Nozoe E, Hanada K, et al. Materials Science and Enginee-ring C, 2021, 122, 111942. 54 Chen J X, Zhang Y, Ibrahim M, et al. Colloids and Surfaces B:Biointerfaces, 2019, 179, 77. 55 Makkar P, Kang H J, Andrew R P, et al. Applied Surface Science, 2020, 510, 145333. 56 Samiee M, Hanachi M, Seyedrouf Z S, et al. Ceramics International, 2021, 47(5), 6179. 57 Li C Y, Yu C, Zeng R C, et al. Bioactive Materials, 2020, 5(1), 34. 58 Jin W H, Wang G M, Qasim A M, et al. Surface & Coatings Technology, 2019, 357, 78. 59 Yang Q Y, Yuan W, Liu X M, et al. Acta Biomaterialia, 2017, 58, 515. 60 Liang T, Zeng L L, Shi Y Z, et al. Bioactive Materials, 2021, 6(10), 3049. 61 Fintová S, Drábiková J, Hadzima B, et al. Surface and Coatings Technology, 2019, 380, 125012. 62 An J H, Qi Y M, Peng Z J, et al. China Surface Engineering, 2020, 33(1), 24 (in Chinese). 安景花, 齐玉明, 彭振军, 等. 中国表面工程, 2020, 33(1), 24. 63 Cheng M Q, Qiao Y Q, Wang Q, et al. Colloids and Surfaces B:Biointerfaces, 2016, 148, 200. 64 Jin W H, Wang G M, Xiang P X, et al. Journal of Alloys and Compounds, 2018, 764, 947. 65 Yang G Q, Chen T J, Feng B, et al. Journal of Alloys and Compounds, 2019, 770, 823. 66 Jin W H, Zhou H L, Li J Y, et al. Chemical Physics Letters, 2020, 756, 137824. 67 Wang Z, Wang X Y, Pei J, et al. Biomaterials, 2020, 247, 119962. 68 Zai W, Zhang X R, Su Y C, et al. Surface & Coatings Technology, 2020, 397, 125919. 69 Zou Y H, Wang J, Cui L Y, et al. Acta Biomaterialia, 2019, 98, 196. 70 Bakhsheshi-Rad H R, Hamzah E, Ismail A F, et al. Journal of Alloys and Compounds, 2019, 773, 180. 71 Gao J R, Bi Y Z, Xue X D, et al. Materials Letters, 2021, 297, 129886. 72 Yu D H, Xiong K Q, Huang N, et al. Material Reports, 2020, 34(6), 170 (in Chinese). 余东海, 熊开琴, 黄楠. 材料导报, 2020, 34(6), 6166. 73 Yang Y X, Fang Z, Liu Y H, et al. Journal of Materials Science & Technology, 2020, 46, 114. 74 Asadi H, Suganthan B, Ghalei S, et al. Progress in Organic Coatings, 2021, 153, 106157. 75 Ascencio M, Pekguleryuz M, Omanovic S. Corrosion Science, 2018, 133, 261. 76 Wang C X, Fang H, Qi X Y, et al. Acta Biomaterialia, 2019, 91, 99. 77 Wang J, Cui L Y, Ren Y D, et al. Journal of Materials Science & Technology, 2020, 47, 52. 78 Liu J, Wang P, Chu C, et al. Colloids and Surfaces B:Biointerfaces, 2017, 159, 78. 79 Guo Y, Yu Y J, Han L P, et al. Materials Science and Engineering C, 2019, 100, 226. 80 Fang H, Wang C X, Zhou S C, et al. Journal of Magnesium and Alloys, 2021, 9(5), 1578. 81 Ji X J, Gao L, Liu J C, et al. Progress in Organic Coatings, 2019, 135, 465. 82 Li M, Yao M Y, Wang W D, et al. Acta Biomaterialia, 2021, 121, 682. 83 Xu W, Yagoshi K, Koga Y, et al. Colloids and Surfaces B:Biointerfaces, 2018, 163, 100. 84 Du M T, Huang L L, Peng M K P, et al. Thin Solid Films, 2020, 693, 137679. 85 Huang L, Li J, Yuan W, et al. Corrosion Science, 2020, 163, 108257. 86 Zhao Y B, Shi L Q, Ji X J, et al. Journal of Colloid and Interface Science, 2018, 526, 43. 87 Dong Q S, Zhou X X, Feng Y J, et al. Bioactive Materials, 2021, 6(1), 158. 88 Guo Y T, Jia S Q, Qiao L, et al. Colloids and Surfaces B:Biointerfaces, 2020, 194, 111186. 89 Singh S, Singh G, Bala N. Materials Chemistry and Physics, 2019, 237, 121884. 90 Zhou H L, Li J Y, Jian L, et al. Surface & Coatings Technology, 2021, 412, 127078. 91 Feng Y S, Ma X, Chang L, et al. Surface & Interface Analysis, 2017, 49(11), 1115. 92 Bakhsheshi-Rad H R, Ismail A F, Aziz M, et al. Ceramics International, 2019, 45(9), 11883. 93 Liu L, Huang B, Liu X M, et al. Bioactive Materials, 2021, 6(2), 568. 94 Li J A, Chen L, Zhang X Q, et al. Materials Science and Engineering C, 2020, 109, 110607. 95 Hou X N, Qin H F, Gao H Y, et al. Materials Science and Engineering C, 2017, 78, 1061. 96 Babu B K, Babu A J, Janardhana G R. Transactions of the Indian Institute of Metals, 2020, 73(11), 2889. 97 Park J, Han H S, Park J, et al. Applied Surface Science, 2018, 448, 424.