Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22020134-16    https://doi.org/10.11896/cldb.22020134
  金属与金属基复合材料 |
医用镁合金体内降解行为与表面改性研究进展
郑洋1,2,*, 张璇2, 卢佳2, 何东磊3, 宿振宇2, 牛伟2, 于镇洋2, 孙荣禄2, 李岩3,4,*
1 天津工业大学航空航天学院,天津 300387
2 天津工业大学机械工程学院,天津 300387
3 北京航空航天大学材料科学与工程学院,北京 100191
4 北京航空航天大学杭州创新研究院(余杭),杭州 310023
Progress on the Research of In-vivo Degradation Behavior and Surface Modification of Biomedical Mg Alloys
ZHENG Yang1,2,*, ZHANG Xuan2, LU Jia2, HE Donglei3, SU Zhenyu2, NIU Wei2, YU Zhenyang2, SUN Ronglu2, LI Yan3,4,*
1 School of Aeronautics and Astronautics, Tiangong University, Tianjin 300387, China
2 School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
3 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
4 Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China
下载:  全 文 ( PDF ) ( 59020KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 医用镁合金具有良好的生物相容性、优异的综合力学性能以及独特的可降解性,是人体非重要承力部位的理想植入材料,但是过快的降解限制了其临床应用。探索更加适合镁合金的植入部位并通过表面改性技术使其降解速率与组织修复过程达到同步是突破临床应用瓶颈的关键。近年来,国内外研究人员研究了体内不同植入环境中镁合金的腐蚀降解机理,利用适当的表面改性技术从涂层成分设计与组织优化角度对医用镁合金的降解行为进行了调控。本文分析了腐蚀介质种类、成分、浓度、流动状态等生理环境对医用镁合金降解行为的影响机制,总结了医用镁合金在骨科、心血管科、消化内科、泌尿外科等植入环境中降解行为的差异,综述了金属涂层、无机非金属涂层、有机高分子涂层、生物功能涂层、复合涂层调控医用镁合金降解行为的研究进展,展望了基于人体特定植入部位开发生物功能性涂层的研究思路,为促进镁合金植入器械的临床应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑洋
张璇
卢佳
何东磊
宿振宇
牛伟
于镇洋
孙荣禄
李岩
关键词:  生物医用金属  可降解镁合金  降解行为  表面改性  耐蚀涂层    
Abstract: Biomedical Mg alloys are ideal temporary implants in non-important bearing sites in human body due to their good biocompatibility, excellent comprehensive mechanical properties and unique biodegradability. However, fast degradation of Mg alloys in the physiological environment severely restricts their clinical applications. The key solution to solve the problem is exploring more suitable implantation sites for Mg alloys and synchronizing their degradation rate with tissue healing process via appropriate surface modification methods. In recent years, researchers at home and abroad systematically studied their degradation mechanism in different in-vivo environments. They also conducted various surface mo-dification methods to regulate their corrosion behavior by preparing coatings with suitable composition and microstructure. First of all, this paper analyzes the effects of physiological environment (including kinds, compositions, concentrations, flow conditions of the corrosive media) on the degradation behavior of Mg alloys. Then, this paper summarizes the degradation behavior of Mg alloys in different implantation sites of orthopedics, cardiovascular, gastroenterology, urology departments. Following that, this paper reviews the research progress in degradation behavior regulation of Mg alloys using various kinds of coatings such as metallic coatings, inorganic non-metallic coatings, organic polymer coatings, biological functional coatings and composite coatings. Finally, this paper puts forward some development directions of bio-functional coatings based on different specific implantation sites, which could provide reference for promoting the clinical applications of Mg alloys.
Key words:  biomedical metal    biodegradable magnesium alloy    degradation behavior    surface modification    corrosion-resistant coating
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TG178  
基金资助: 天津市自然科学基金(19JCQNJC02800);国家自然科学基金(51971014)
通讯作者:  *郑洋,天津工业大学讲师、硕士研究生导师。2016年7月博士毕业于北京航空航天大学材料科学与工程学院,2016—2017年就职于中国石油天然气管道局,2017—2019年在河北工业大学机械工程学院进行博士后研究工作,2019年11月入职天津工业大学机械工程学院。主持天津市自然科学基金青年项目、河北省高层次人才资助项目;参研国家重点研发计划“战略性国际科技创新合作”重点专项。入选天津市高校青年后备人才培养计划,主要从事材料连接技术、材料表面改性技术的研究工作。近年来,在Corrosion Science、Materials Science and Engineering C、Progress in Natural Science、Materials International、Applied Surface Science等期刊上发表SCI文章20余篇。 zhengyang@tiangong.edu.cn; 李岩,北京航空航天大学教授、博士研究生导师,研究方向为生物医用材料和金属智能材料。入选教育部新世纪优秀人才和北京市科技新星。担任中国生物材料学会医用金属材料分会常务委员、中国腐蚀与防护学会医用金属腐蚀控制分会副主任委员、中国金属学会功能材料分会委员。主持国家重点研发计划、国家自然科学基金项目等科研项目多项。发表SCI论文130余篇,获国家发明专利授权30余项,获2016年度国家科学技术进步二等奖。 liyan@buaa.edu.cn   
引用本文:    
郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
ZHENG Yang, ZHANG Xuan, LU Jia, HE Donglei, SU Zhenyu, NIU Wei, YU Zhenyang, SUN Ronglu, LI Yan. Progress on the Research of In-vivo Degradation Behavior and Surface Modification of Biomedical Mg Alloys. Materials Reports, 2023, 37(19): 22020134-16.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020134  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22020134
1 Zeng R C, Cui L Y, Ke W. Acta Metallurgica Sinica, 2018, 54(9), 1215 (in Chinese).
曾荣昌, 崔蓝月, 柯伟. 金属学报, 2018, 54(9), 1215.
2 Zheng Y F, Liu J N. Materials China, 2020, 39(2), 92 (in Chinese).
郑玉峰, 刘嘉宁. 中国材料进展, 2020, 39(2), 92.
3 Kiani F, Wen C, Li Y. Acta Biomaterialia, 2020, 103, 1.
4 Zhang X N, Zuo M C, Zhang S X, et al. Acta Metallurgica sinica, 2017, 53(10), 1215 (in Chinese).
张小农, 左敏超, 张绍翔, 等. 金属学报, 2017, 53(10), 1215.
5 Yin L, Huang H, Yuan G Y, et al. Materials China, 2019, 38(2), 126 (in Chinese).
尹林, 黄华, 袁广银, 等. 中国材料进展, 2019, 38(2), 126.
6 Zheng Y F, Gu X N, Witte F, et al. Materials Science and Engineering R, 2014, 77(2), 1.
7 Emmanuel M M, Lucien V. Journal of Magnesium and Alloys, 2020, 8(3), 667.
8 Liang M J, Wu C, Ma Y, et al. Materials Science and Engineering C, 2021, 119, 111521.
9 Zhang Z Q, Wang L, Zeng M Q, et al. Bioactive Materials, 2020, 5(2), 398.
10 Liu S Y, Wang B. Journal of Materials Research and Technology, 2020, 9(3), 6612.
11 Han L Y, Li X, Bai J, et al. Materials Chemistry and Physics, 2018, 217, 300.
12 Emmanuel M M, Lucien V, Luis J. Revista De Metalurgia, 2020, 52(2), e166.
13 Wu H, Wu G S, Chu P K. Surface & Coatings Technology, 2016, 306, 6.
14 Zhang S Y, Bi Y Z, Li J Y, et al. Bioactive Materials, 2017, 2(2), 53.
15 Sekar P, Narendranath S, Desai V. Journal of Magnesium and Alloys, 2021, 9(4), 1147.
16 Wang J, Wu Y, Li H, et al. Biomaterials, 2018, 157, 86.
17 Liu J N, Lin Y L, Bian D, et al. Acta Biomaterialia, 2019, 98, 50.
18 Yang L, Liu L, Peng W, et al. Biomaterials, 2016, 106, 250.
19 Ha T, Jiang X, Zhang K, et al. Journal of Medical Biomechanics, 2019, 34(1), 77 (in Chinese).
哈彤, 江雄, 张阔, 等. 医用生物力学, 2019, 34(1), 77.
20 Holweg P, Berger L, Cihova M, et al. Acta Biomaterialia, 2020, 113, 646.
21 Stürznickel J, Delsmann M M, Jungesblut O D, et al. Injury, 2021, 52(8), 2265.
22 Xie K, Wang L, Guo Y, et al. Journal of Orthopaedic Translation, 2021, 27, 96.
23 Bian D, Zhou X, Liu J, et al. Acta Biomaterialia, 2021, 124, 382.
24 Mao L, Zhou H, Chen L, et al. Journal of Alloys and Compounds, 2017, 720, 245.
25 Kandala B, Zhang G, Lcorriveau C, et al. Bioactive Materials, 2021, 6(6), 1663.
26 Peng H, Fan K, Zan R, et al. Acta Biomaterialia, 2021, 128, 514.
27 El-Kamel R S, Ghoneim A A, Fekry A M. Materials Science and Engineering C, 2019, 103, 109780.
28 Gao M, Na D, Ni X Q, et al. Bioactive Materials, 2021, 6(1), 55.
29 Huang Q L, Liu L, Wu H, et al. Materials Science and Engineering C, 2020, 106, 110158.
30 Zhang S Y, Zheng Y, Zhang L M, et al. Materials Science and Enginee-ring C, 2016, 68, 414.
31 Tie D, Liu H N, Guan R G, et al. Acta Biomaterialia, 2020, 116(2), 415.
32 Li Z M, Liu G, Zhang Q H, et al. Intervent Radiol, 2018, 27(4), 353 (in Chinese).
李宗明, 刘耿, 张全会, 等. 介入放射学杂志, 2018, 27(4), 353.
33 Bao G, Fan Q Q, Ge D F, et al. Acta Biomaterialia, 2019, 97, 623.
34 Si J W, Shen H Z, Miao H W, et al. Journal of Magnesium and Alloys, 2021, 9(1), 281.
35 Ding P F, Liu Y C, He X H, et al. Bioactive Materials, 2019, 4, 236.
36 Yu X, Li D Y, Liu Y C, et al. Materials Science and Engineering C, 2020, 115, 111093.
37 Yin Z Z, Qi W C, Zeng R C, et al. Journal of Magnesium and Alloys, 2020, 8(1), 42.
38 Heimann R B. Surface & Coatings Technology, 2021, 405, 126521.
39 Hu Y J, Bi Y Z, He D L, et al. Surface Technology, 2019, 48(9), 11 (in Chinese).
胡怡娟, 毕衍泽, 何东磊, 等. 表面技术, 2019, 48(9), 11.
40 Liu X Y, Peng F. Journal of the Chinese Ceramic Society, 2017, 45(10), 1421 (in Chinese).
刘宣勇, 彭峰. 硅酸盐学报, 2017, 45(10), 1421.
41 Rahim S A, Joseph M A, Sampath Kumar T S, et al. Frontiers in Materials, 2022, 9, 848980.
42 Zheng Y, Li Y, Chen J H, et al. Progress in Natural Science:Materials International, 2014, 24(5), 547.
43 Zheng Y, Ma Y L, Zang L B, et al. Materials and Corrosion, 2019, 70(12), 2292.
44 Zheng Y, Zang L B, Bi Y Z, et al. Coatings, 2018, 8(8), 261.
45 Dong Q S, Jia Y Q, Ba Z X, et al. Journal of Alloys and Compounds, 2021, 873, 159739.
46 Zhang D F, Wei B B, Wu Z T, et al. Surface & Coatings Technology, 2016, 303, 94.
47 Zhou B Y, Jia Y Q, Song H, et al. Transactions of Materials and Heat Treatment, 2019, 40(10), 135 (in Chinese).
周必元, 郏永强, 宋浩, 等. 材料热处理学报, 2019, 40(10), 135.
48 Zhang D F, Qi Z B, Wei B B, et al. Materials Letters, 2017, 190, 181.
49 Sun J Y, Cai S, Wei J L, et al. Journal of the Chinese Ceramic Society, 2020(6), 810. (in Chinese).
孙佳月, 蔡舒, 韦洁玲, 等. 硅酸盐学报, 2020(6), 810.
50 Shen S B, Cai S, Bao X G, et al. Chemical Engineering Journal, 2018, 339, 7.
51 Zhou W C, Hu Z R, Wang T L, et al. Colloids and Surfaces B:Biointerfaces, 2020, 186, 110710.
52 Wen S F, Liu X L, Ding J H, et al. Progress in Natural Science:Materials International, 2021, 31(2), 324.
53 Hiromoto S, Nozoe E, Hanada K, et al. Materials Science and Enginee-ring C, 2021, 122, 111942.
54 Chen J X, Zhang Y, Ibrahim M, et al. Colloids and Surfaces B:Biointerfaces, 2019, 179, 77.
55 Makkar P, Kang H J, Andrew R P, et al. Applied Surface Science, 2020, 510, 145333.
56 Samiee M, Hanachi M, Seyedrouf Z S, et al. Ceramics International, 2021, 47(5), 6179.
57 Li C Y, Yu C, Zeng R C, et al. Bioactive Materials, 2020, 5(1), 34.
58 Jin W H, Wang G M, Qasim A M, et al. Surface & Coatings Technology, 2019, 357, 78.
59 Yang Q Y, Yuan W, Liu X M, et al. Acta Biomaterialia, 2017, 58, 515.
60 Liang T, Zeng L L, Shi Y Z, et al. Bioactive Materials, 2021, 6(10), 3049.
61 Fintová S, Drábiková J, Hadzima B, et al. Surface and Coatings Technology, 2019, 380, 125012.
62 An J H, Qi Y M, Peng Z J, et al. China Surface Engineering, 2020, 33(1), 24 (in Chinese).
安景花, 齐玉明, 彭振军, 等. 中国表面工程, 2020, 33(1), 24.
63 Cheng M Q, Qiao Y Q, Wang Q, et al. Colloids and Surfaces B:Biointerfaces, 2016, 148, 200.
64 Jin W H, Wang G M, Xiang P X, et al. Journal of Alloys and Compounds, 2018, 764, 947.
65 Yang G Q, Chen T J, Feng B, et al. Journal of Alloys and Compounds, 2019, 770, 823.
66 Jin W H, Zhou H L, Li J Y, et al. Chemical Physics Letters, 2020, 756, 137824.
67 Wang Z, Wang X Y, Pei J, et al. Biomaterials, 2020, 247, 119962.
68 Zai W, Zhang X R, Su Y C, et al. Surface & Coatings Technology, 2020, 397, 125919.
69 Zou Y H, Wang J, Cui L Y, et al. Acta Biomaterialia, 2019, 98, 196.
70 Bakhsheshi-Rad H R, Hamzah E, Ismail A F, et al. Journal of Alloys and Compounds, 2019, 773, 180.
71 Gao J R, Bi Y Z, Xue X D, et al. Materials Letters, 2021, 297, 129886.
72 Yu D H, Xiong K Q, Huang N, et al. Material Reports, 2020, 34(6), 170 (in Chinese).
余东海, 熊开琴, 黄楠. 材料导报, 2020, 34(6), 6166.
73 Yang Y X, Fang Z, Liu Y H, et al. Journal of Materials Science & Technology, 2020, 46, 114.
74 Asadi H, Suganthan B, Ghalei S, et al. Progress in Organic Coatings, 2021, 153, 106157.
75 Ascencio M, Pekguleryuz M, Omanovic S. Corrosion Science, 2018, 133, 261.
76 Wang C X, Fang H, Qi X Y, et al. Acta Biomaterialia, 2019, 91, 99.
77 Wang J, Cui L Y, Ren Y D, et al. Journal of Materials Science & Technology, 2020, 47, 52.
78 Liu J, Wang P, Chu C, et al. Colloids and Surfaces B:Biointerfaces, 2017, 159, 78.
79 Guo Y, Yu Y J, Han L P, et al. Materials Science and Engineering C, 2019, 100, 226.
80 Fang H, Wang C X, Zhou S C, et al. Journal of Magnesium and Alloys, 2021, 9(5), 1578.
81 Ji X J, Gao L, Liu J C, et al. Progress in Organic Coatings, 2019, 135, 465.
82 Li M, Yao M Y, Wang W D, et al. Acta Biomaterialia, 2021, 121, 682.
83 Xu W, Yagoshi K, Koga Y, et al. Colloids and Surfaces B:Biointerfaces, 2018, 163, 100.
84 Du M T, Huang L L, Peng M K P, et al. Thin Solid Films, 2020, 693, 137679.
85 Huang L, Li J, Yuan W, et al. Corrosion Science, 2020, 163, 108257.
86 Zhao Y B, Shi L Q, Ji X J, et al. Journal of Colloid and Interface Science, 2018, 526, 43.
87 Dong Q S, Zhou X X, Feng Y J, et al. Bioactive Materials, 2021, 6(1), 158.
88 Guo Y T, Jia S Q, Qiao L, et al. Colloids and Surfaces B:Biointerfaces, 2020, 194, 111186.
89 Singh S, Singh G, Bala N. Materials Chemistry and Physics, 2019, 237, 121884.
90 Zhou H L, Li J Y, Jian L, et al. Surface & Coatings Technology, 2021, 412, 127078.
91 Feng Y S, Ma X, Chang L, et al. Surface & Interface Analysis, 2017, 49(11), 1115.
92 Bakhsheshi-Rad H R, Ismail A F, Aziz M, et al. Ceramics International, 2019, 45(9), 11883.
93 Liu L, Huang B, Liu X M, et al. Bioactive Materials, 2021, 6(2), 568.
94 Li J A, Chen L, Zhang X Q, et al. Materials Science and Engineering C, 2020, 109, 110607.
95 Hou X N, Qin H F, Gao H Y, et al. Materials Science and Engineering C, 2017, 78, 1061.
96 Babu B K, Babu A J, Janardhana G R. Transactions of the Indian Institute of Metals, 2020, 73(11), 2889.
97 Park J, Han H S, Park J, et al. Applied Surface Science, 2018, 448, 424.
[1] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[2] 易荣, 王法衡, 刘永财, 李涤尘, 刘亚雄. 聚醚醚酮的表面改性策略综述[J]. 材料导报, 2023, 37(11): 21070057-12.
[3] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[4] 梁娜, 姚存峰, 龙斌, 付晓刚. 铅冷快堆结构材料耐蚀涂层技术研究概述[J]. 材料导报, 2022, 36(23): 21090168-7.
[5] 梁朝, 李茹春, 李春全, 孙志明, 陈珍明, 郑水林. 硅酸钙表面有机改性和形貌对填充PP复合材料力学性能的影响及机理[J]. 材料导报, 2022, 36(23): 21080298-8.
[6] 鲁春驰, 王影, 王东征. 涂布正极表面丝网印刷氧化锌颗粒对锂离子电池性能的影响[J]. 材料导报, 2022, 36(21): 21050056-5.
[7] 郑皓华, 邓雅洁, 吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报, 2022, 36(19): 21110079-5.
[8] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[9] 刘莹, 杨俊杰, 易艳良, 张治国, 王小健, 李卫, 周圣丰. 抗菌不锈钢的抗菌原理、常规加工与增材制造[J]. 材料导报, 2021, 35(23): 23097-23105.
[10] 高育欣, 刘明, 曾超, 王福涛, 王鹏, 叶子, 张磊. 机制砂表面改性技术研究与应用[J]. 材料导报, 2021, 35(22): 22072-22078.
[11] 于桐, 邵文尧, 洪专, 吴晨溥, 沈路钫, 谢全灵. 石墨烯量子点在分离膜材料中的应用研究进展[J]. 材料导报, 2021, 35(21): 21143-21150.
[12] 郭竟尧, 侯显斌, 魏钰坤, 戴乐阳, 廖海峰, 孙迪. 纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能[J]. 材料导报, 2021, 35(20): 20011-20015.
[13] 尹艳丽, 于鹤龙, 王红美, 魏敏, 史佩京, 白志民, 张伟, 徐滨士. 表面改性海泡石纳米纤维作为润滑油添加剂的摩擦学行为[J]. 材料导报, 2021, 35(14): 14017-14024.
[14] 朱志强, 王庆平, 闵凡飞, 薛婷婷, 卢春阳, 刘玉新. SiCp/Al复合材料界面调控研究进展[J]. 材料导报, 2021, 35(13): 13139-13147.
[15] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed