Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21050169-5    https://doi.org/10.11896/cldb.21050169
  金属与金属基复合材料 |
扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响
龚玉玲1,2, 武美萍2,*, 缪小进2, 崔宸2
1 泰州学院船舶与机电工程学院,江苏 泰州 225300
2 江南大学机械工程学院,江苏 无锡 214122
Effect of Scanning Speed on Corrosion Resistance of CeO2/Ni60A Coating Prepared by Laser Cladding
GONG Yuling1,2, WU Meiping2,*, MIAO Xiaojin2, CUI Chen2
1 School of Shipping and Mechatronic Engineering, Taizhou University, Taizhou 225300, Jiangsu, China
2 School of Mechanical Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
下载:  全 文 ( PDF ) ( 4429KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了扫描速度对激光熔覆CeO2/Ni60A复合涂层成形质量与耐腐蚀性能的影响规律,利用同轴送粉技术在TC4表面制备了四种不同扫描速度(8 mm/s、12 mm/s、16 mm/s、20 mm/s)的强化涂层,对涂层进行了几何特征观察、显微组织分析及电化学耐腐蚀性能检测。研究结果表明,扫描速度会影响涂层内部的马兰戈尼对流效应,且涂层中的硬质相主要为TiB2和TiC,且TiB2晶粒尺寸的减小有利于TiC相的长大和析出。当扫描速度为20 mm/s时,涂层中的元素偏析严重,降低了元素分布均匀性,涂层表面钝化膜的致密度较低,易被外加电压击穿。当扫描速度为12 mm/s时,涂层表面钝化膜的致密度较高,所表现出的电化学耐腐蚀性能也较强,说明钝化膜自我修复效果显著。选取12 mm/s的扫描速度可获得成形质量高、耐腐蚀性能优异的CeO2/Ni60A复合涂层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚玉玲
武美萍
缪小进
崔宸
关键词:  激光熔覆  CeO2/Ni60A复合涂层  电化学腐蚀  显微组织  表面改性    
Abstract: The effect of scanning speed on the forming quality and corrosion resistance of laser cladding CeO2/Ni60A composite coating was studied in this work. Four kinds of coatings with different scanning speeds (8 mm/s, 12 mm/s, 16 mm/s and 20 mm/s) were prepared on TC4 surface by coaxial powder feeding technology. The geometric characteristics, microstructure and electrochemical corrosion resistance of the coating were observed. The results show that the Marangoni convection effect is affected by the scanning speed, and the hard phases in the coating are mainly composed of TiB2 and TiC. The decrease of the size of TiB2 is conducive to the growth and precipitation of TiC. When the scanning speed is 20 mm/s, the element segregation in the coating is serious, which reduces the uniformity of element distribution. The density of the passive film on the coating surface is low, and it tends to be broken down by applied voltage. When the scanning speed is 12 mm/s, the density of the passive film on the surface of the coating is higher, and the electrochemical corrosion resistance is higher, which means the self-healing effect of the passive film is remarkable. CeO2/Ni60A composite coating with high forming quality and excellent corrosion resistance can be obtained by selecting the scanning speed of 12 mm/s.
Key words:  laser cladding    CeO2/Ni60A composite coating    electrochemical corrosion    microstructure    surface modification
收稿日期:  2022-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TG174.4  
基金资助: 泰州学院科研课题(TZXY2020ZDKT002);江苏省机电产品回收利用技术重点建设实验室开放式基金项目(RRME201902);135泰州市产教融合项目(2018TZCJ002);泰州市科技支撑计划(社会发展)项目(TN202134)
通讯作者:  *wumeiping163@163.com   
作者简介:  龚玉玲,江南大学机械工程学院博士研究生,泰州学院船舶与机电工程学院副教授,在武美萍教授的指导下进行研究。主要研究方向为激光熔覆及再制造修复,以第一作者在国内外学术期刊上发表学术论文20多篇。武美萍,江南大学机械工程学院教授、博士研究生导师。2005年于南京航空航天大学宇航制造与工程专业毕业,获得博士学位。主要研究方向为数字化设计与制造、复杂装备智能化制造。以第一作者及通讯作者在国内外学术期刊上发表学术论文100余篇,授权国际/国家发明专利9项,主持国家科技重大专项子课题、国家自然科学基金面上项目等多项科研项目。
引用本文:    
龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
GONG Yuling, WU Meiping, MIAO Xiaojin, CUI Chen. Effect of Scanning Speed on Corrosion Resistance of CeO2/Ni60A Coating Prepared by Laser Cladding. Materials Reports, 2022, 36(18): 21050169-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050169  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21050169
1 Xiao G Z. Steel Pipe, 2018, 47(2), 9(in Chinese).
肖国章. 钢管, 2018, 47(2), 9.
2 Sunaba T, Ito T, Miyata Y, et al. Corrosion, 2014, 70(10), 988.
3 Ye F X, Shao W X, Ye X C, et al. Journal of Chemistry, 2020, 2020, 8690428.
4 Bai Y, Wang Z H, Zuo J J, et al. Chinese Journal of Lasers, 2020, 47(10), 1002001(in Chinese).
白杨, 王振华, 左娟娟, 等. 中国激光, 2020, 47(10), 1002001.
5 Xu R H, Li X F, Zuo D W, et al. Rare Metals, 2014, 38(5), 807(in Chinese).
许瑞华, 黎向锋, 左敦稳, 等. 稀有金属, 2014, 38(5), 807.
6 Zhao S J, Qi W J, Huang Y H, et al. Surface Technology, 2020, 49(2), 301(in Chinese).
赵盛举, 祁文军, 黄艳华, 等. 表面技术, 2020, 49(2), 301.
7 Li J N, Chen C Z, Zhang C F. Bulletin of Materials Science, 2012, 35(3), 399.
8 Chen Q, Guillemot G, Gandin C A, et al. Additive Manufacturing, 2018, 21, 713.
9 Hamaguchi K, Hoashi E, Okita T, et al. Fusion Engineering and Design, 2019,140, 117.
10 Liang J, Yin X Y, Lin Z Y, et al. Surface & Coatings Technology, 2020, 403, 126409.
11 Liu Y N, Yang L J, Yang X J, et al. Ceramics International, 2021, 47(2), 2230.
12 Farahmand P, Liu S, Zhang Z, et al. Ceramics International, 2014, 40(10), 15421.
13 Tang B H, Tan Y F, Zhang Z W, et al. Coatings, 2020, 10(1), 76.
14 Martin O, De Tiedra P, Garcia C, et al. Corrosion Science,2012,54,119.
15 Xie G Z, Song X L, Zhang D J, et al. Applied Surface Science, 2010, 256(21), 6354.
16 Xu W, Chen M, Lu X, et al. Corrosion Science, 2020, 168, 108557.
17 Rosalbino F, Maccio D, Scavino G, et al. Journal of Materials Science-Materials in Medicine, 2012, 23(4), 865.
18 Schulz C, Schlafer T, Plowman J, et al. JOM, 2020, 72(12), 4624.
19 Rajaguru J, Arunachalam N. Corrosion Science, 2018, 141, 230.
20 Tian Z H, Zhao Y T, Jiang Y J, et al. Journal of Materials Science, 2020, 55(10), 4478.
[1] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[2] 侯锁霞, 赵江昆, 李强, 何丽娜, 张好强. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(Z1): 22030105-4.
[3] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[4] 谷米, 孙荣禄, 牛伟, 郝文俊, 左润燕. 硼铁粉含量对激光熔覆AlCoCrFeNi高熵合金涂层性能及形貌的影响[J]. 材料导报, 2022, 36(8): 20120230-5.
[5] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[6] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[7] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[8] 王伟, 孙文磊, 张志虎, 于江通, 黄海博, 王杨宵, 肖奇. 激光二次扫描熔覆涂层组织演变规律及数值模拟研究[J]. 材料导报, 2022, 36(2): 20090204-7.
[9] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[10] 葛晓宇, 闫二虎, 陈运灿, 黄仁君, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe渗氢合金成分优化设计和氢传输性能研究[J]. 材料导报, 2022, 36(18): 21060218-6.
[11] 李萧, 胡水平, 蔡钰. 固溶温度对碳烯/6061铝基复合材料轧制薄板组织与力学性能的影响[J]. 材料导报, 2022, 36(18): 21010123-6.
[12] 张春芝, 尚希昌, 孙晟瑄, 单美琳, 王灿明, 崔洪芝. 激光熔覆高性能Fe基非晶涂层的研究进展[J]. 材料导报, 2022, 36(15): 21020101-8.
[13] 刘成豪, 陈芙蓉. 超声冲击强化7A52铝合金VPPA-MIG焊接接头的疲劳性能[J]. 材料导报, 2022, 36(15): 21030115-5.
[14] 胡勇, 刘飞, 刘员员, 赵龙志, 焦海涛, 唐延川, 刘德佳. AlMgLi0.5Zn0.5Cu0.2轻质高熵合金的组织和耐腐蚀性研究[J]. 材料导报, 2022, 36(14): 22010093-6.
[15] 种振曾, 孙耀宁, 程旺军, 韩晨阳, 苏才津, 娜菲沙·迪力夏提, 樊子龙. 纳米WC对AlCoCrFeNi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2022, 36(14): 22030230-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed