Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 22030230-6    https://doi.org/10.11896/cldb.22030230
  高熵合金* |
纳米WC对AlCoCrFeNi高熵合金涂层耐磨与耐蚀性能的影响
种振曾, 孙耀宁, 程旺军, 韩晨阳, 苏才津, 娜菲沙·迪力夏提, 樊子龙
新疆大学机械工程学院,乌鲁木齐 830017
Effect of Nano WC on Wear and Corrosion Resistances of AlCoCrFeNi High-entropy Alloy Coating
CHONG Zhenzeng, SUN Yaoning, CHENG Wangjun, HAN Chenyang, SU Caijin, NAFITHA Delichti, FAN Zilong
School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
下载:  全 文 ( PDF ) ( 9099KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 AlCoCrFeNi高熵合金具有良好的力学性能、耐磨性能以及抗蚀性能,可作为易损零部件的涂层材料。为进一步提高AlCoCrFeNi涂层性能,本工作通过机械混粉的方式对AlCoCrFeNi和AlCoCrFeNi+WC(5%)(添加5%质量分数的碳化钨)高熵合金粉末进行预处理,在45#钢表面通过激光熔覆制备了涂层,并对比研究了两种涂层的表面形貌、微观组织、元素分布、显微硬度、摩擦磨损及耐蚀性能。结果表明,AlCoCrFeNi+WC(5%)涂层表面粗糙度更低,涂层仍为体心立方结构(BCC/B2),且其晶粒组织得到了细化,W元素和Cr元素富集在晶界处,因细晶强化和第二相强化效应共同作用,涂层平均显微硬度从500HV提高到了600HV。选用直径为4 mm的Si3N4小球作为摩擦副,在10 N的载荷下测试30 min。与AlCoCrFeNi涂层相比,WC的掺杂使摩擦系数从0.8减小到0.6,磨损失重减少了0.84 mg,磨损划痕宽度和深度较小,磨损程度较轻。在3.5%(质量分数)NaCl溶液的电化学测试中,经过WC掺杂的涂层的自腐蚀电位提高了0.042 V,自腐蚀电流密度降低了一个数量级,同时该涂层表现出较大的电容弧直径,且测试后表面腐蚀坑明显减少,腐蚀程度较轻。这表明纳米WC的添加有效提高了AlCoCrFeNi高熵合金涂层的耐磨与耐蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
种振曾
孙耀宁
程旺军
韩晨阳
苏才津
娜菲沙·迪力夏提
樊子龙
关键词:  高熵合金  激光熔覆  纳米碳化钨  显微组织  耐磨性  耐蚀性    
Abstract: AlCoCrFeNi high-entropy alloys have good mechanical properties, wear resistance, and corrosion resistance, which can be used as a coating material for vulnerable parts. AlCoCrFeNi and AlCoCrFeNi+WC(5wt%) high-entropy alloy powders were pretreated by mechanical powder mixing, and afterwards the coatings were prepared by laser melting on the surface of 45# steel, in order to further improve its performance. The surface morphology, microstructure, element distribution, microhardness, friction wear, and corrosion resistance of the two coatings were comparatively studied. The results show that the surface roughness of the AlCoCrFeNi+WC(5%) coating is lower, that the coating still has a body-centered cubic structure (BCC/B2) and that the grain structure of the coating has been refined, with W and Cr elements concentrated at the grain boundaries. The average microhardness of the coating was increased from 500HV to 600HV due to the combined effect of fine grain strengthening and second phase strengthening. The Si3N4 sphere with 4 mm diameter was selected as the friction substrate and tested under a load of 10 N for 30 min. The doping of WC reduced the friction coefficient from 0.8 to 0.6, the wear weight loss was reduced by 0.84 mg, the width and depth of wear scratches were minimized, and the wear level was lighter, compared with those of the AlCoCrFeNi coating. In the electrochemical test with a 3.5wt% NaCl solution, the self-corrosion potential of the WC-doped coating increased by 0.042 V, while the self-corrosion current density reduced by one order of magnitude, and the WC-doped coating exhibited a larger capacitive arc diameter. After the test, the AlCoCrFeNi+WC(5%) coating showed lighter corrosion, and the corrosion pits on its surface were significantly reduced. These results indicate that the addition of nano WC can effectively improve the wear and corrosion resistances of the AlCoCrFeNi high-entropy alloy coating.
Key words:  high-entropy alloy    laser cladding    nano tungsten carbide    microstructure    wear resistance    corrosion resistance
发布日期:  2022-07-26
ZTFLH:  TG146  
  TB31  
基金资助: 新疆维吾尔自治区科技支疆项目(2020E0264);新疆维吾尔自治区高校科研计划项目(XJEDU2019I005)
通讯作者:  xj_syn@126.com   
作者简介:  种振曾,2020年6月于新疆大学获得工学学士学位。现为新疆大学机械工程学院硕士研究生,在孙耀宁教授的指导下进行研究。目前主要研究领域为激光熔覆制备高熵合金涂层。
孙耀宁,新疆大学机械工程学院教授、博士研究生导师。2000年本科毕业于西安理工大学材料成型及控制工程专业,2005年硕士毕业于兰州理工大学材料加工工程专业,2008年博士毕业于兰州理工大学材料加工工程专业,然后到新疆大学工作至今。目前主要从事表面工程技术、复合材料、先进制造技术等方面的研究工作。发表论文70余篇,包括Materials Science & Engineering A, Ceramics International, Vacuum, Applied Optics等。
引用本文:    
种振曾, 孙耀宁, 程旺军, 韩晨阳, 苏才津, 娜菲沙·迪力夏提, 樊子龙. 纳米WC对AlCoCrFeNi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2022, 36(14): 22030230-6.
CHONG Zhenzeng, SUN Yaoning, CHENG Wangjun, HAN Chenyang, SU Caijin, NAFITHA Delichti, FAN Zilong. Effect of Nano WC on Wear and Corrosion Resistances of AlCoCrFeNi High-entropy Alloy Coating. Materials Reports, 2022, 36(14): 22030230-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030230  或          http://www.mater-rep.com/CN/Y2022/V36/I14/22030230
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
2 Macdonald B E, Fu Z, Zheng B, et al. Jom, 2017, 69, 2024.
3 Li H C, Wang J, Yuan R H, et al. Materials Reports, 2021, 35(17), 17010(in Chinese).
李洪超, 王军, 袁睿豪, 等. 材料导报, 2021, 35(17), 17010.
4 Chao Q, Guo T T, Jarvis T, et al. Surface and Coatings Technology, 2017, 332, 440.
5 Huo W Y, Shi H F, Zhang J Y. Materials Reports A: Review Papers, 2014, 28(12), 76(in Chinese).
霍文燚, 时海芳, 张竞元. 材料导报:综述篇, 2014, 28(12), 76.
6 Jin H, Ji R J, Dong T C, et al. Journal of Materials Research and Technology, 2022, 16, 152.
7 Xiao Q, Sun W L, Yang K X, et al. Surface and Coatings Technology, 2021, 420(9), 127341.
8 Ma Q S, Li Y J, Wang J, et al. Materials and Design, 2016, 92, 897.
9 Wang X H, Zhang M, Du B S, et al. Surface Review and Letters, 2012, 19, 295.
10 Zhang W, Zhang M Y, Peng Y B, et al. International Journal of Refractory Metals and Hard Materials, 2020, 86, 105109.
11 Peng Y B, Zhang W, Li T C, et al. International Journal of Refractory Metals and Hard Materials, 2019, 84, 105044.
12 Bao Y F, Guo L P, Zhong C H, et al. Materials Today Communications, 2021, 26(1), 102154.
13 Li D Y, Jiang H, Zou L J, et al. Hot Working Technology, 2019, 48(10), 117(in Chinese).
李大艳, 姜慧, 邹龙江, 等. 热加工工艺, 2019, 48(10), 117.
14 Vyas A, Menghani J, Natu H. Journal of Materials Engineering and Performance, 2021, 30,2449.
15 An X L, Liu Q B. Rare Metal Materials and Engineering, 2016, 45(9), 2424(in Chinese).
安旭龙, 刘其斌. 稀有金属材料与工程, 2016, 45(9), 2424.
16 Zhang S, Wu C L, Yi J Z, et al. Surface and Coatings Technology, 2015, 262, 64.
17 Zhou R, Chen G, Liu B, et al. International Journal of Refractory Metals and Hard Materials, 2018, 75, 56.
18 Gorsse S, Nguyen M H, Senkov O N, et al. Data in Brief, 2018, 21, 2664.
19 Shang C, Axinte E, Ge W, et al. Surfaces and Interfaces, 2017, 9, 36.
20 Fan Q K, Chen C, Fan C L, et al. Materials Science and Engineering A, 2021, 821, 141607.
21 Guo C A, Zhao Z K, Zhao S, et al. Materials Reports A: Review Papers, 2019, 33(5), 1462(in Chinese).
郭策安, 赵宗科, 赵爽, 等. 材料导报:综述篇,2019,33(5),1462.
22 Jeong D H, Erb U, Aust K T, et al. Scripta Materialia,2003,48(8),1067.
23 Jeong D H, Gonzalez F, Palumbo G, et al. Scripta Materialia, 2001, 44(3), 493.
24 Luo H, Wang X, Dong C, et al. Corrosion Science, 2017, 124, 178.
25 Chou Y L, Yeh J W, Shih H C. Corrosion Science, 2010, 52, 2571.
26 Laleh M, Hughes A E, Xu W, et al. Corrosion Science, 2019, 155, 67.
[1] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[2] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[3] 陈小丽. 有机酸对新型铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 22010030-5.
[4] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[5] 侯锁霞, 赵江昆, 李强, 何丽娜, 张好强. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(Z1): 22030105-4.
[6] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[7] 王鼎, 周艳文, 张开策, 粟志伟, 杜峰, 武俊生, 郭诚. 离子氮化中氮在典型钢中的扩散行为研究[J]. 材料导报, 2022, 36(Z1): 22010109-6.
[8] 谷米, 孙荣禄, 牛伟, 郝文俊, 左润燕. 硼铁粉含量对激光熔覆AlCoCrFeNi高熵合金涂层性能及形貌的影响[J]. 材料导报, 2022, 36(8): 20120230-5.
[9] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[10] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[11] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[12] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[13] 王伟, 孙文磊, 张志虎, 于江通, 黄海博, 王杨宵, 肖奇. 激光二次扫描熔覆涂层组织演变规律及数值模拟研究[J]. 材料导报, 2022, 36(2): 20090204-7.
[14] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[15] 张平, 蒋丽, 杨金学, 苏钲雄, 王建强, 施坦, 卢晨阳. 核用难熔高熵合金的研究进展[J]. 材料导报, 2022, 36(14): 22060260-22.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed