Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20090204-7    https://doi.org/10.11896/cldb.20090204
  金属与金属基复合材料 |
激光二次扫描熔覆涂层组织演变规律及数值模拟研究
王伟, 孙文磊, 张志虎, 于江通, 黄海博, 王杨宵, 肖奇
新疆大学机械工程学院,乌鲁木齐 830047
Study on Evolution Law of Microstructure of Cladding Layer by Laser Rescanning and Numerical Simulation
WANG Wei,SUN Wenlei, ZHANG Zhihu, YU Jiangtong, HUANG Haibo,WANG Yangxiao,XIAO Qi
School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
下载:  全 文 ( PDF ) ( 15360KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 旨在研究激光二次扫描工艺对熔覆层组织(晶粒大小和晶粒形态)的影响,以确定最佳激光二次扫描功率。本工作建立了激光熔覆和激光二次扫描的温度场,提取了熔覆层关键节点的热循环曲线,与实验验证相结合,分析了峰值温度和散热能力对涂层组织生长变化的影响规律。结果表明:无论是激光熔覆阶段还是激光二次扫描阶段,随着其峰值温度和散热能力沿熔池中心从结合区到熔覆层顶部方向逐渐提高,涂层组织由平面晶逐渐向胞晶、柱状胞晶、枝晶和等轴晶过渡,且随着激光二次扫描功率的提高,熔覆层晶粒呈增粗增大的生长趋势,其中激光二次扫描功率为1 200 W和1 500 W时表现尤为显著,且二次扫描功率过大时,会加大基材的熔化区域,提高涂层的稀释率。而相比之下,激光二次扫描功率为900 W时,晶体组织的粒度相对细小且可以避免稀释率的增加。此外,经激光二次扫描后,滞留在熔覆层中的气孔获得再次上浮和释放的机会,熔覆层表面未熔化的粉末颗粒得到了充分的熔化,变得更加平整、光滑且富有金属光泽,顶部疏松结构得到了显著的改善,这不仅提高了涂层质量,而且可以缩短后续的加工周期,同时也能够节省一定的熔覆材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王伟
孙文磊
张志虎
于江通
黄海博
王杨宵
肖奇
关键词:  激光二次扫描  激光熔覆  散热能力  热循环特性  峰值温度    
Abstract: The aim is to study the influence of the laser rescanning process on the cladding layer structure (grain size and grain morphology) to determine the best laser rescanning power. In this work, the temperature field of laser cladding and laser rescanning was established and the thermal cycle curve of its key nodes was extracted. Combined with experimental verification, the effect of peak temperature and heat dissipation capacity on the microstructure growth of coating was analyzed. The results show that no matter in the stage of laser cladding or the laser rescanning, with the peak temperature and heat dissipation capacity gradually increasing along the molten pool center from the bonding zone to the top of the cladding layer, the coating microstructure gradually transits from planar crystal to cellular crystal, columnar cell crystal, dendrite and equiaxed crystal. With the increase of the laser rescanning power, the crystal grains of the cladding layer will grow thicker and larger, and the performance is particularly remarkable when the laser rescanning power is 1 200 W and 1 500 W. And if the rescanning power is too large, it will increase the melting of the substrate and the dilution rate of the coating. In contrast, when the laser rescanning power is 900 W, the crystal grains are relatively small and the increase of dilution ratio can be avoided. In addition, after the laser rescanning, the pores retained in the cladding layer can be released again. The unmelted powder particles on the surface of the cladding layer are fully melted, becoming more flat, smooth and full of metallic luster. The loose structure at the top of cladding layer is also significantly improved, which not only improves the quality of the coating, but also shortens the subsequent processing cycle, while also saving a certain amount of cladding materials.
Key words:  laser rescanning    laser cladding    heat dissipation capacity    thermal cycle characteristics    peak temperature
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TG174.4  
基金资助: 新疆克拉玛依重大专项(2018ZD002B);自治区重点实验室开放基金(2020520002)
通讯作者:  sunwenxj@163.com20090204-1   
作者简介:  王伟,新疆大学2018级硕士研究生,主要从事激光熔覆再制造和表面改性方面的研究。孙文磊,新疆大学教授,博士研究生导师,主要从事增材再制造技术方面的研究。
引用本文:    
王伟, 孙文磊, 张志虎, 于江通, 黄海博, 王杨宵, 肖奇. 激光二次扫描熔覆涂层组织演变规律及数值模拟研究[J]. 材料导报, 2022, 36(2): 20090204-7.
WANG Wei,SUN Wenlei, ZHANG Zhihu, YU Jiangtong, HUANG Haibo,WANG Yangxiao,XIAO Qi. Study on Evolution Law of Microstructure of Cladding Layer by Laser Rescanning and Numerical Simulation. Materials Reports, 2022, 36(2): 20090204-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090204  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20090204
1 Jiang S S,Liang L S,Shu F Y. Materials Reports,2020,34(Z1),448(in Chinese).
蒋三生,梁立帅,舒凤远. 材料导报,2020,34(Z1),448.
2 Huang G K,Qu L D,Lu Y Z,et al. Vacuum,2018,153,39.
3 Liu J F, Li H L,Yu X Y,et al. Materials Protection,2014,47(6),69(in Chinese).
刘敬福,李赫亮,于小月,等. 材料保护,2014,47(6),69.
4 Shi J,Bai S Q,et al. Key Engineering Materials,2013,546,40.
5 Zhang Y,Han T F,Xiao M,et al. International Journal of Minerals Metallurgy and Materials,2020,27(5),630.
6 Tan J H,Sun R L,Niu W,et al. Materials Reports A:Review Papers,2020,34(8),15132(in Chinese).
谭金花,孙荣禄,牛伟,等. 材料导报:综述篇,2020,34(8),15132.
7 Yang D,Ning Y H,Zhao Y G,et al. Materials Reports B:Research Papers,2017,31(12),133(in Chinese).
杨丹,宁玉恒,赵宇光,等. 材料导报:研究篇,2017,31(12),133.
8 Wang Y Y,Chai L J,Wu L,et al. Journal of Chongqing University of Technology(Natural Science), 2020,34(9),159 (in Chinese).
王月圆,柴林江,吴璐,等.重庆理工大学学报(自然科学版),2020,34(9),159.
9 Gao W Y,Zhao S S,Wang Y B,et al. Surface & Coatings Technology,2015,270,16.
10 Gao W Y,Zhang Z Y,Zhao S S,et al. Surface & Coatings Technology,2016,291,423.
11 Dai D P,Jiang X H,Cai J P,et al. Chinese Journal of Lasers,2015,42(9),121(in Chinese).
戴德平,蒋小华,蔡建鹏, 等. 中国激光,2015,42(9),121.
12 Yang G,Wang W,Qin L Y,et al. Applied Mechanics and Materials,2012,117,1633.
13 Li M Y,Han B,Cai C B,et al. Transactions of the China Welding Institution,2015,36(5),25(in Chinese).
李美艳,韩 彬,蔡春波,等. 焊接学报,2015,36(5),25.
14 Li C,Yu Z B,Gao J X,et al. China Surface Engineering,2019,32(1),126(in Chinese).
李昌,于志斌,高敬翔,等. 中国表面工程,2019,32(1),126.
15 Wu D J,Wu N,Yang C,et al. Rare Metal Materials and Engineering,2013,42(10),2039(in Chinese).
吴东江,吴楠,杨策,等. 稀有金属材料与工程,2013,42(10),2039.
16 Zhao S J,Qi W J,Huang Y H,et al. Surface Technology,2020,49(2),301(in Chinese).
赵盛举,祁文军,黄艳华,等. 表面技术,2020,49(2),301.
17 Ren Z H,Wu M P,Cui C,et al. Chinese Journal of Lasers,2019,46(8),118(in Chinese).
任仲贺,武美萍,崔宸,等. 中国激光,2019,46(8),118.
18 Tian J Y,Xu P,Chen J H,et al. Optics and Lasers in Engineering,2019,122,97.
19 Zhang J,Yang L,Zhang W,et al. Optics and Lasers in Engineering,2020,126,105873.
20 Gao J L,Wu C Z,Hao Y B,et al. Optics and Laser Technology,2020,129,106287.
21 Song B X,Yu T B,Jiang X Y,et al. Numerical Heat Transfer,2020,78(2),48.
22 Yong Y W,Fu W,Deng Q L,et al. Journal of Manufacturing Processes,2017,28,364.
23 Gao W Y,Zhao S S,Wang Y B,et al. Materials and Design,2014,64,490.
24 Zhang D Q, Zhang J Q,Li J H. Machinery Design & Manufacture, 2016(5),122 (in Chinese).
张德强,张吉庆, 李金华,等. 机械设计与制造,2016(5),122.
25 Chen X, Chen B, Cheng X, et al. Journal of Iron and Steel Research International, 2020, 27(7), 842.
26 Yu Z Y, Zheng Y,Chen,J M,et al. Journal of Materials Processing Technology,2020,284(5),116738.
27 Zhou S S,Xu Y B,Liao Q,et al. Optics and Laser Technology,2018,103,8.
28 Li Y J,Dong S Y,Yan S X,et al. Optics and Laser Technology,2019,112,30.
29 Xiong A H,Ding J Q,Liu Y H,et al. Applied Laser,2019,39(3),381(in Chinese).
熊安辉,丁洁琼,刘延辉,等. 应用激光,2019,39(3),381.
30 Chen J,Li S H,Yan X F,et al. Hot Working Technology,2018,47(11),232(in Chinese).
陈晶,李少华,颜飞雪,等. 热加工工艺,2018,47(11),232.
31 Ding X F,Li X Z,Feng Q,et al. International Journal of Minerals Metallurgy and Materials,2017,24,884.
32 Chen J W,Xiong F Y,Huang C Y,et al. Scientia Sinica(Physica,Mechanica & Astronomica),2020,50(9),104(in Chinese).
陈嘉伟,熊飞宇,黄辰阳,等. 中国科学(物理学,力学,天文学),2020,50(9),104.
33 Wu D J, Wu N,Yang C,et al. Rare Metal Materials and Engineering, 2013,42(10),2039(in Chinese).
吴东江,吴楠,杨策,等. 稀有金属材料与工程,2013,42(10),2039.
34 Hu Z, Li W, Zhao Y. Materials, 2020, 13(8), 1867.
35 Yu T B,Song B X,Xi W C,et al. Laser Engineering,2019,44,11.
36 Zhao W,Zhang K,Liu P,et al. Journal of Functional Materials,2019,50(1),1098(in Chinese).
赵伟,张柯,刘平,等. 功能材料,2019,50(1),1098.
[1] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[2] 侯锁霞, 任呈祥, 吴超, 赵江昆, 张舵, 张好强. 激光熔覆层裂纹的产生和抑制方法[J]. 材料导报, 2021, 35(Z1): 352-356.
[3] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[4] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[5] 张彦超, 韦朋余, 朱强, 赵文涛, 李天庆, 曾庆波. 316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能[J]. 材料导报, 2021, 35(8): 8121-8126.
[6] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[7] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.
[8] 李英, 李平. 激光熔覆制备抗冲蚀磨损镍基复合涂层的研究进展[J]. 材料导报, 2021, 35(15): 15162-15168.
[9] 方振兴, 祁文军, 李志勤. 304不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J]. 材料导报, 2021, 35(12): 12123-12129.
[10] 高敬翔, 李昌, 陈正威, 韩兴. 基于相场法的超声振动对激光熔覆多晶凝固行为的影响[J]. 材料导报, 2021, 35(12): 12161-12168.
[11] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[12] 蒋三生, 梁立帅, 舒凤远. 45钢表面激光熔覆Co基合金覆层工艺优化[J]. 材料导报, 2020, 34(Z1): 448-451.
[13] 刘浩东, 喻辉, 戴京涛, 崔爱永, 魏华凯, 赵培仲, 卢长亮. 非真空激光定向凝固参数对DZ22合金熔覆层组织的影响[J]. 材料导报, 2020, 34(20): 20091-20095.
[14] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. TC4合金激光熔覆材料的研究现状[J]. 材料导报, 2020, 34(15): 15132-15137.
[15] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed