Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8121-8126    https://doi.org/10.11896/cldb.20010039
  金属与金属基复合材料 |
316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能
张彦超1, 韦朋余2, 朱强1,2, 赵文涛1, 李天庆1, 曾庆波2
1 江苏大学材料科学与工程学院,镇江 212013
2 中国船舶科学研究中心,无锡 214000
Microstructure and Pb-Bi Erosion Resistance Property of Stellite6 Coating by Laser Cladding on 316L Stainless Steel Surface
ZHANG Yanchao1, WEI Pengyu2, ZHU Qiang1,2, ZHAO Wentao1, LI Tianqing1, ZENG Qingbo2
1 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2 China Ship Scientific Research Center, Wuxi 214000, China
下载:  全 文 ( PDF ) ( 8524KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高316L不锈钢耐高温液态铅铋的腐蚀能力,通过使用同轴送粉的激光熔覆方式,在316L不锈钢表面制备一层Stellite6合金涂层,将其放入400 ℃的高温液态铅铋中进行500 h高速流腐蚀试验,其中相对流速设置为2.56 m/s。分析涂层的微观组织、物相组成、元素分布、显微硬度值等的变化规律,以及该涂层耐液态铅铋的腐蚀性能。涂层组织由等轴晶、树枝晶、胞状晶及平面晶组成,搭接区晶粒沿不同方向长大;涂层主要有γ-Co、CoCx、(Cr,Fe)7C3及M23C6等物相;各组分元素在涂层表面均匀分布,Co、Cr与Fe等元素在基体316L与涂层之间发生明显扩散;Stellite6涂层的硬度平均值为基体材料316L的2.3倍,且最高达到556.8HV。在进行高温液态铅铋高速流腐蚀后,316L不锈钢表面生成了大面积且连续的氧化物,存在大量微型腐蚀坑,Stellite6涂层表面仅存在少量氧化物,未发现明显的腐蚀坑,较好地维持了原貌;Stellite6涂层表面粗糙度值为1.0 μm,而316L经腐蚀后的表面粗糙度为2.4 μm。Stellite6合金涂层能够有效地提高316L不锈钢基体在高温液态铅铋合金中的耐腐蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张彦超
韦朋余
朱强
赵文涛
李天庆
曾庆波
关键词:  激光熔覆  Stellite6涂层  耐铅铋腐蚀性能    
Abstract: Stellite6 alloy coating was prepared on the surface of 316L stainless steel by laser cladding with coaxial feeding powder, which aims to improve the Pb-Bi erosion resistance property of the 316L stainless steel. The Stellite6 alloy coating was placed in liquid Pb-Bi at 400 ℃ high speed flow corrosion test for 500 h, The relative flow rate was set at 2.56 m/s. The coating microstructure, phase composition, element distribution, hardness distribution and the Pb-Bi erosion resistance property were studied, the results show that the microstructure of the coating is composed of equiaxed, dendritic, cellular and planar crystals, and the grains in the overlap zone grow in different directions. The coating mainly includes γ-Co, CoCx, (Cr,Fe)7C3 and M23C6 phases, each component element distributed on the coating surface evenly, Co, Cr and Fe elements diffuse between the 316L substrate and the coating layer obviously. The average hardness of the Stellite6 coating is 2.3 times that of the 316L substrate, and the highest hardness is 556.8HV. After the high-speed liquid Pb-Bi corrosion, large and continuous oxides are generated on the surface of 316L stainless steel, and there is a large number of micro-corrosion pits. The surface of Stellite6 coating is well maintained with a small amount of oxides existed and no obvious corrosion pits founded. Stellite6 coating surface roughness is 1.0 μm,while 316L surface roughness is 2.4 μm. Stellite6 alloy coating can effectively improve the corrosion resistance of 316L stainless steel matrix in high temperature liquid Pb-Bi alloy.
Key words:  laser cladding    Stellite6 coating    Pb-Bi corrosion resistance property
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TG146.1+6  
基金资助: 国家自然科学基金青年基金(51505197);装备预研领域基金项目(JZX7Y20190263074601)
通讯作者:  zhuqng@163.com   
作者简介:  张彦超,江苏大学硕士研究生,导师朱强,主要从事激光熔覆及核材料在铅铋共晶合金中的腐蚀研究。
朱强,江苏大学副教授,主要从事焊接工艺、先进连接技术等方面的研究与开发。在国内外学术期刊上发表论文20余篇,授权国家发明专利3项。
引用本文:    
张彦超, 韦朋余, 朱强, 赵文涛, 李天庆, 曾庆波. 316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能[J]. 材料导报, 2021, 35(8): 8121-8126.
ZHANG Yanchao, WEI Pengyu, ZHU Qiang, ZHAO Wentao, LI Tianqing, ZENG Qingbo. Microstructure and Pb-Bi Erosion Resistance Property of Stellite6 Coating by Laser Cladding on 316L Stainless Steel Surface. Materials Reports, 2021, 35(8): 8121-8126.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010039  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8121
1 Chen X C, Li S, Ren X L, et al. Energy and Energy Conservation,2018,155(8),58(in Chinese).
陈小砖,李硕,任晓利,等.能源与节能,2018,155(8),58.
2 Rong L J, Zhang Y T, Lu S P. Handbook on lead-bismuth eutectic alloy and lead-properties, materials compatibility, thermal-hydraulics and technologies, Science Press, China,2014(in Chinese).
戎利建,张玉妥,陆善平.铅与铅铋共晶手册-性能,材料相容性,热工水力学和技术,科学出版社,2014.
3 Martinelli L, Dufrenoy T, Jaakou K, et al. Journal of Nuclear Materials,2008,376(3),282.
4 Wu Y C, Huang Q Y, Bai Y Q, et al. Nuclear Science and Engineering,2010,30(3),238(in Chinese).
吴宜灿,黄群英,柏云清,等.核科学与工程,2010,30(3),238.
5 Zhu Q, Zhao J, Lei Y C, et al. Surface Technology,2019,48(1),234(in Chinese).
朱强,赵军,雷玉成,等.表面技术,2019,48(1),234.
6 Park J J, Butt D P, Beard C A. Nuclear Engineering and Design,2000,196(3),315.
7 Fazio C, Benamati G, Martini C, et al. Journal of Nuclear Materials,2001,296(1),243.
8 Konys J, Muscher H, et al. Journal of Nuclear Materials,2001,296(1-3),289.
9 Xu Y L, Long B, Atomic Energy Science and Technology,2003,37(4),325(in Chinese).
许咏丽,龙斌.原子能科学技术,2003,37(4),325.
10 Shi J, Liu F, Wang W G, et al. Hot Working Technology,2016(20),93(in Chinese).
时健,刘峰,王望根,等.热加工工艺,2016 (20),93.
11 Muller G, Schumacher G, Zimmermann F. Journal of Nuclear Materials,2000,278(1),85.
12 Huang F, Lei Y C, Lu C, et al. Journal of Functional Materials,2017(1),1199(in Chinese).
黄飞,雷玉成,陆超,等.功能材料,2017(1),1199.
13 Zhang D Q, Niu X L, Li J H, et al. Machinery Design & Manufacture,2015,(6),105(in Chinese).
张德强,牛兴林,李金华,等.机械设计与制造,2015,(6),105.
14 Wang D S, Tian Z J, Shen L D, et al. Applied Laser,2012(6),85(in Chinese).
王东生,田宗军,沈理达,等.应用激光,2012(6),85.
15 Ren C, Li Z G, Shu D, et al. Chinese Journal of Lasers,2017,44(4),0402010(in Chinese).
任超,李铸国,疏达,等.中国激光,2017,44(4),0402010.
16 D′oliveiraa S C, Silva P S C, Vilarr M. Surface and Coatings Technology,2002,153(2),203.
17 Pant B K, Mann B S. Journal of Materials Engineering & Performance,2012,21(6),1051.
18 Tian S J, Zhang J W. Journal of University of Science and Technology of China,2015,(9),751(in Chinese)
田书建,张建武.中国科学技术大学学报,2015,(9),751.
19 Woodford D A. Metallurgical Transactions,1972,3(5),1137.
[1] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[2] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.
[3] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[4] 蒋三生, 梁立帅, 舒凤远. 45钢表面激光熔覆Co基合金覆层工艺优化[J]. 材料导报, 2020, 34(Z1): 448-451.
[5] 刘浩东, 喻辉, 戴京涛, 崔爱永, 魏华凯, 赵培仲, 卢长亮. 非真空激光定向凝固参数对DZ22合金熔覆层组织的影响[J]. 材料导报, 2020, 34(20): 20091-20095.
[6] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. TC4合金激光熔覆材料的研究现状[J]. 材料导报, 2020, 34(15): 15132-15137.
[7] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[8] 施佳鑫, 朱卫华, 朱红梅, 陈志勇, 刘晋京, 史新灵, 王新林. CaB6对激光熔覆生物陶瓷涂层组织和生物学性能的影响[J]. 材料导报, 2020, 34(10): 10030-10034.
[9] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[10] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[11] 谢敏, 王梅丰, 戴晓琴, 雷剑波, 王春霞, 周圣丰. 综论偏晶合金的制备技术:外场下凝固、快速凝固及激光技术[J]. 材料导报, 2019, 33(3): 490-499.
[12] 范鹏飞,孙文磊,张冠,王恪典. 激光熔覆铁基合金梯度涂层的组织性能及应用[J]. 材料导报, 2019, 33(22): 3806-3810.
[13] 刘颖, 董丽虹, 王海斗. 激光熔覆成型的各向异性表征方法研究现状[J]. 材料导报, 2019, 33(21): 3541-3546.
[14] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[15] 刘健健,朱诚意,李光强. 连铸结晶器铜板表面涂镀层应用研究进展[J]. 材料导报, 2019, 33(17): 2831-2838.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed