Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20091-20095    https://doi.org/10.11896/cldb.19050019
  金属与金属基复合材料 |
非真空激光定向凝固参数对DZ22合金熔覆层组织的影响
刘浩东1, 喻辉2, 戴京涛1, 崔爱永1, 魏华凯1, 赵培仲1, 卢长亮1
1 海军航空大学青岛校区,青岛 266041
2 中国人民解放军92281部队,潍坊 262200
Effect of Non-vacuum Laser Directional Solidification Parameters on Cladding Layer of DZ22 Alloy
LIU Haodong1, YU Hui2, DAI Jingtao1, CUI Aiyong1, WEI Huakai1, ZHAO Peizhong1, LU Changliang1
1 Qingdao Branch, Naval Aviation University, Qingdao 266041, China
2 No.92281 Unit, People’s Liberation Army of China, Weifang 262200, China
下载:  全 文 ( PDF ) ( 6318KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为改善DZ22合金的定向凝固熔覆层组织,实现定向凝固基材的大面积修复,本工作采用固定变量法,通过改变相应的激光工艺参数,研究激光工艺参数对DZ22合金定向凝固熔覆层组织的影响。结果表明,随着电流和脉宽的增大,熔覆层一次枝晶间距变大,二次枝晶逐渐变多且不断长大,等轴晶区域也增多,转向枝晶区高度增大;随着频率的增大,熔覆层上层等轴晶区域先增多后减少,一次枝晶干逐渐变细;而扫描速度和一次枝晶尺度呈负相关,随着扫描速度的变大,一次枝晶间距逐渐减小,转向枝晶区高度也降低,高扫描速度不利于形成柱状晶组织。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘浩东
喻辉
戴京涛
崔爱永
魏华凯
赵培仲
卢长亮
关键词:  DZ22合金  定向凝固  激光熔覆  微观组织    
Abstract: In order to improve the microstructure of laser directional solidification cladding for DZ22, realize large area repairing for directional solidification base materials, fixed variable method was adopted in this work, with which the influence of laser process parameters on the microstructure of directionally solidification alloy DZ22 was studied by changing the laser process parameters. The results showed that the primary dendrites spa-cing and the height of the steering dendrites zone became larger, the number of the secondary dendrites and the volume was bigger, and the zone of isoaxial crystal was increased with the increase of current and pulse width; The zone of isoaxial crystal in the laser cladding upper layer was enlarged first and then reduced, and the primary dendrites were tapering with the increase of frequency; Scanning velocity was negatively correlated with the primary dendrites scale, and the primary dendrites spacing and the height of the steering dendrites zone became smaller with the increase of scanning velocity, besides, high scanning speed was not conducive to the formation of columnar structure.
Key words:  DZ22 alloy    directional solidification    laser cladding    microstructure
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  TG146.1  
基金资助: 国家自然科学基金(51505491)
通讯作者:  mdlhd@sina.com   
作者简介:  刘浩东,海军航空大学讲师,2005年9月至2009年6月,在中国石油大学(华东)获得油气储运工程专业工学学士学位;2009年9月至2011年12月,在陆军工程大学获得材料学专业工学硕士学位;2012年2月至2016年6月,在海军航空大学获得航空宇航科学与技术学科工学博士学位;毕业后留校任教。以第一作者在国内外学术期刊上发表论文20余篇,申请国家发明专利3项,其中授权1项,并担任多个学术期刊的审稿人。研究工作主要围绕国家和部队重点发展的先进金属材料,开展关于先进加工工艺以及组织性能控制的基础理论和应用研究,参与包括国家自然科学基金青年项目、中国博士后科学基金面上项目、军队科研计划项目、军队装备维改项目等。
引用本文:    
刘浩东, 喻辉, 戴京涛, 崔爱永, 魏华凯, 赵培仲, 卢长亮. 非真空激光定向凝固参数对DZ22合金熔覆层组织的影响[J]. 材料导报, 2020, 34(20): 20091-20095.
LIU Haodong, YU Hui, DAI Jingtao, CUI Aiyong, WEI Huakai, ZHAO Peizhong, LU Changliang. Effect of Non-vacuum Laser Directional Solidification Parameters on Cladding Layer of DZ22 Alloy. Materials Reports, 2020, 34(20): 20091-20095.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050019  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20091
1 Chen Y S, Zhang H B. Acta Aeronautica et Astronautica Sinica, 2011, 32(8), 1371(in Chinese).
陈予恕, 张华彪. 航空学报, 2011, 32(8),1371.
2 Chen R Z. Aeronautical Manufacturing Technology, 2002(2), 19(in Chinese).
陈荣章. 航空制造技术, 2002(2), 19.
3 Hoelzer D, Bentley T J, Sokolov M A, et al. Journal of Nuclear Mater, 2007, 367-370(1), 166.
4 Schneibel J H, Liu C T, Miller M K, et al. Scripta Mater, 2009, 61(8), 793.
5 Yao C S, Chen Z, Wang Y X, et al. Rare Metal Materials and Enginee-ring, 2012, 41(11), 2064(in Chinese).
姚传生, 陈铮, 王永欣, 等. 稀有金属材料与工程, 2012, 41(11), 2064.
6 Tong J, Chen J Q, Zheng Z, et al. Chinese Journal of Materials Resea-rch, 2016, 30(2), 140(in Chinese).
佟健, 陈甲祺, 郑志, 等. 材料研究学报, 2016, 30(2), 140.
7 Huo M, Liu L, Huang T W, et al. Materials Review A: Review Papers, 2018, 32(10), 3394(in Chinese).
霍苗, 刘林, 黄太文, 等. 材料导报:综述篇, 2018, 32(10), 3394.
8 Hu Z L, Liu L R, Jin T, et al. Aeroengine, 2005, 31(3), 1(in Chinese).
胡壮麟, 刘丽荣, 金涛, 等. 航空发动机, 2005, 31(3), 1.
9 Tian Q, Zhao Z L, Ai C H, et al. Transactions of the China Welding Institution, 2014, 35(4), 99(in Chinese).
田齐, 赵志龙, 艾昌辉, 等. 焊接学报, 2014, 35(4), 99.
10 Zhao J Q, Li J L. Special Casting & Nonferrous Alloys, 2018, 38(2), 122(in Chinese).
赵金乾, 李嘉荣. 特种铸造及有色金属合金, 2018, 38(2), 122.
11 Fuchs G E. Advanced materials and processes for gas turbines, Warrendale, PA: TMS, 2003.
12 Liu E Z, Zheng Z, Tong J, et al. Rare Metal Materials and Engineering, 2011, 40(7), 1129(in Chinese).
刘恩泽, 郑志, 佟健, 等. 稀有金属材料与工程, 2011, 40(7), 1129.
13 Shenoy M M, Mcdowell D L, Neu R W. International Journal of Plasticity, 2006, 22(12), 2301.
14 Xiong J G, Hu Q W, Wu F S, et al. Applied Laser, 2001, 21(5), 309(in Chinese).
熊建钢, 胡乾午, 吴丰顺, 等. 应用激光, 2001, 21(5), 309.
15 Shepeleva L, Medres B, Kaplan W D, et al. Surface & Coatings Techno-logy, 2000, 125(1-3), 45.
16 Sexton L, Lavin S, Byrne G, et al. Journal of Materials Processing Technology, 2002, 122(1), 63.
17 Jones J, Mcnutt P, Tosi R, et al. In: 23rd Annu Int Solid Free Fabr Symp Austin. Texas, USA, 2012,pp.821.
18 Li X L, Liu W J, Zhong M L. Applied Laser, 2002, 22(3), 283(in Chinese).
李晓莉, 刘文今, 钟敏霖. 应用激光, 2002, 22(3), 283.
19 Sun H Q, Zhong M L, Liu W J, et al. Journal of Aeronautical Materials, 2005, 25(2), 26(in Chinese).
孙鸿卿, 钟敏霖, 刘文今, 等. 航空材料学报, 2005, 25(2), 26.
20 Chen Z J, Zhang Q L, Lou C H, et al. Applied Laser, 2013(1), 7(in Chinese).
陈智君, 张群莉, 楼程华, 等. 应用激光, 2013(1), 7.
21 Li Q G, Lin X, Wang X H, et al. Applied Laser, 2016(4), 471(in Chinese).
李秋歌, 林鑫, 王杏华, 等. 应用激光, 2016(4), 471.
22 Hu B, Hu F Y, Guan R G, et al. The Chinese Journal of Nonferrous Metals, 2013, 23(7), 1969(in Chinese).
胡滨, 胡芳友, 管仁国, 等.中国有色金属学报, 2013, 23(7), 1969.
23 Mullins W W, Sekerka R F. Journal of Applied Physic, 1963, 34, 323.
24 Zhang D Y, Li Z B, Zhao H, et al. Applied Laser, 2013, 33(2), 113(in Chinese).
张冬云, 李志波, 赵恒, 等. 应用激光, 2013, 33(2), 113.
25 Chen T J, Hao Y, Sun J. Journal of Wuhan University of Technology-Materials Science Edition, 2003, 18(3), 9.
[1] 蒋健博, 黄以平, 李少林, 刘海浪, 彭治国, 谭毅. 电子束诱导定向凝固对硅中Fe杂质分凝的影响[J]. 材料导报, 2020, 34(Z2): 173-176.
[2] 许爱平, 侯继军, 董俊慧. 稀土活性剂对TC4钛合金激光焊焊接接头的影响[J]. 材料导报, 2020, 34(Z2): 348-350.
[3] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[4] 屈少杰, 李成军, 汤志强, 李斌东, 熊刚. TiZr3V6合金微观组织及吸氢物相转变[J]. 材料导报, 2020, 34(Z2): 360-361.
[5] 李鑫, 谢辉, 杨宾, 李双明. Mg2(Si,Sn)基热电材料研究进展[J]. 材料导报, 2020, 34(Z1): 43-47.
[6] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[7] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[8] 蒋三生, 梁立帅, 舒凤远. 45钢表面激光熔覆Co基合金覆层工艺优化[J]. 材料导报, 2020, 34(Z1): 448-451.
[9] 刘钊扬, 熊柏青, 张永安, 李志辉, 李锡武, 闫丽珍, 温凯. 汽车车身板用6A16铝合金拉深成形金属流动和微观组织相关性研究[J]. 材料导报, 2020, 34(8): 8119-8125.
[10] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[11] 信思树, 王镇华, 李春玲, 王清. 体心立方BCC基多元合金中的共格析出及强化[J]. 材料导报, 2020, 34(7): 7130-7137.
[12] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[13] 陈健, 周莉, 刘金洋, 吉红伟, 杨勇, 刘伟, 邓欣, 伍尚华. 真空和渗氮烧结WC-TiC-Co硬质合金的梯度结构形成机理研究[J]. 材料导报, 2020, 34(4): 4077-4082.
[14] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[15] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed