Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8119-8125    https://doi.org/10.11896/cldb.19090225
  金属及金属基复合材料 |
汽车车身板用6A16铝合金拉深成形金属流动和微观组织相关性研究
刘钊扬1,2,3, 熊柏青1,3, 张永安1,2,3, 李志辉1,3, 李锡武1,2,3, 闫丽珍1,2,3, 温凯1,2,3
1 有研科技集团有限公司有色金属材料制备加工国家重点实验室,北京 101407;
2 有研工程技术研究院有限公司,北京 101407;
3 北京有色金属研究总院, 北京 100088
Study on Correlation Between Metal Flow and Microstructure of Deep Drawing Test of 6A16 Aluminum Alloy for Automobile Body Panel
LIU Zhaoyang1,2,3, XIONG Baiqing1,3, ZHANG Yong’an1,2,3, LI Zhihui1,3, LI Xiwu1,2,3, YAN Lizhen1,2,3, WEN Kai1,2,3
1 State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., LTD., Beijing 101407, China;
2 GRIMAT Engineering Institute Co., LTD., Beijing 101407, China;
3 General Research Institute for Nonferrous Metals, Beijing 100088, China
下载:  全 文 ( PDF ) ( 11039KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于能源和环境问题的日益严峻,汽车轻量化的研究和发展成为热点,其中6000系铝合金在汽车车身板上的应用受到广泛关注。本研究基于ABAQUS/Explicit有限元方法,对预时效并室温停放一周后的6A16铝合金板材在适宜条件下的拉深成形过程进行模拟,并通过试验进行验证。研究结果表明:Barlat91屈服准则适用于模拟6A16铝合金的拉深成形。在6A16铝合金的拉深成形过程中,铝合金板材顶部增厚,易产生褶皱;筒壁随着筒高的减小而减薄;圆角处最薄,易破裂;底部形变量少。经560 ℃/30 min的固溶处理+140 ℃/ 5min预时效处理后的6A16铝合金板材(T4P态)晶粒取向以Cube取向为主,随着拉深成形的进行,Cube取向晶粒逐渐消失,并在轧制方向和垂直轧制方向四个位置产生制耳。在本试验研究范围内,随着筒壁高度的增加,板材晶粒尺寸变大,小角度晶界比例增大,Mg2Si和富Si相尺寸变小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘钊扬
熊柏青
张永安
李志辉
李锡武
闫丽珍
温凯
关键词:  ABAQUS  6A16铝合金  拉深成形  金属流动  微观组织    
Abstract: Due to the increasingly severe energy and environmental problems, the research and development of lightweight vehicles has become a hot topic, and the application of 6000 series aluminum alloys on automobile body panels has received extensive attention. The process of metal flow and microstructure evolution of 6A16 aluminum alloy plate during drawing forming was investigated by simulated and tested, after presaging and storage at room temperature for one month based ABAQUS/Explicit finite element method. The results show that in the process of deep drawing test, the top part become thicker and crease easily. Meanwhile, the integral hardness and thickness of the cup-typed component increases with the increase of the height of the wall. The rounded corners become thinner and crack easily. The grain orientation of 6A16 aluminum alloy is mainly based on Cube orientation, and the ear is produced at four positions in the rolling direction and the vertical rolling direction. As the deep drawing progresses, the Cube oriented grains gradually disappear. In the scope of this experimental study, as the height of the wall decreases, the grain size becomes smaller, the proportion of the large-angle grain boundary increases, and the Mg2Si and Si-rich phases become larger and thicker particularly in rounded corners area.
Key words:  ABAQUS    6A16 aluminum alloy    deep drawing    metal flow    microstructure
                    发布日期:  2020-04-25
ZTFLH:  TG386.1  
基金资助: 中国国家重点研究发展计划(2016YFB0300805)
通讯作者:  xiongbaiq@163.com   
作者简介:  刘钊扬,北京有色研究总院在读博士。2011年于中南大学获学士学位,2014年获中南大学硕士学位。2014年在北京有色金属研究总院攻读博士学位,致力研究汽车覆盖件与框架件制造用新型铝合金材料,以第一作者身份发表SCI论文两篇。
熊柏青,教授级高级工程师,博士研究生导师。1995年毕业于北京科技大学材料物理系,获工学博士学位。现任有研科技集团有限公司党委副书记、董事、提名为有研科技集团有限公司总经理人选。长期从事有色金属结构材料强韧化理论与技术、航空航天用高强高韧铝合金材料、汽车覆盖件与框架件制造用新型铝合金材料、快速凝固合金材料与制备技术研究,作为负责人主持了17项(含国家973重大基础研究计划“先进金属材料成形的组织调控技术基础”项目——编号2012CB723900)、作为骨干参加了40余项本专业领域的国家级科技计划项目的研究工作。在国内外核心期刊上发表学术论文240余篇,被SCI、EI收录160余篇次;获授权国际发明专利和国家发明专利37项;主编出版科技著作1部、合作出版科技专著1部。
引用本文:    
刘钊扬, 熊柏青, 张永安, 李志辉, 李锡武, 闫丽珍, 温凯. 汽车车身板用6A16铝合金拉深成形金属流动和微观组织相关性研究[J]. 材料导报, 2020, 34(8): 8119-8125.
LIU Zhaoyang, XIONG Baiqing, ZHANG Yong’an, LI Zhihui, LI Xiwu, YAN Lizhen, WEN Kai. Study on Correlation Between Metal Flow and Microstructure of Deep Drawing Test of 6A16 Aluminum Alloy for Automobile Body Panel. Materials Reports, 2020, 34(8): 8119-8125.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090225  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8119
1 Hirsch J, Al-Sammam T. Acta Materialia, 2013, 61(3), 818.
2 Davies G. Materials for automobile bodies, Linacre House, Jordan Hill, Burlington, 2012.
3 Ni J L, Li L, Liu Q, Zhao F Q et al. In: Proceedings of the FISITA 2012 World Automotive Congress Berlin, Springer Berlin Heidelberg, 2013, pp.901.
4 Fu L. Automobile Technology & Material, 2006,8,8.
5 Wang M J, Ren J, Huang D Y, et al. Journal of Central South University (Science and Technology), 2008, 39(4),755(in Chinese).
王孟君, 任杰, 黄电源,等. 中南大学学报(自然科学版), 2008, 39(4),755.
6 Ilangovan M, Boopathy S R, Balasubramanian V. Transactions of Nonferrous Metals Society of China, 2015, 25(4),1080.
7 He Z B, Fan X B, Shao F, et al. Transactions of Nonferrous Metals So-ciety of China, 2012, 22(Suppl 2),s364.
8 Groche P, Norman M. In: ASME 2012 International Manufacturing Scie-nce and Engineering Conference. American Society of Mechanical Engineers,USA, 2012,pp.127.
9 Ghosh M, Miroux A, Werkhoven R J, et al. Journal of Materials Proces-sing Technology, 2014, 214(4), 756.
10 Yan L Z. Research of a novel 6000 series aluminum alloy with enhanced age-hardening response for automotive body panels. Ph.D. Thesis, Northeastern University, China,2015(in Chinese).
闫丽珍. 汽车车身板用新型快速时效响应6000系铝合金研究. 博士研究生论文,东北大学, 2015.
11 Demirci, Ibrahim H, Esner, et al. Journal of Materials Processing Technology, 2008, 206(1),152.
12 Sasaki H, Mukai T, Yanagida A. Key Engineering Materials, 2016, 716,184.
13 Liu H J, Lang L H, Li T. Journal of Plasticity Engineering, 2009, 16(3),145(in Chinese).
刘合军, 郎利辉, 李涛. 塑性工程学报, 2009, 16(3),145.
14 Tu J L, Wang Y J, Hui X P, et al. Forging and Stamping Technology, 2014, 39(6),50(in Chinese).
涂集林, 王永军, 惠小鹏, 等. 锻压技术, 2014, 39(6),50.
15 Xie Y M, Tian Y, Sun X Q, et al. Forging and Stamping Technology. 2015, 40(3),25(in Chinese).
谢延敏, 田银, 孙新强, 等. 锻压技术, 2015, 40(3),25.
16 Hu Y N, Wang L G, Huang Y, et al. Forging and Stamping Technology, 2017, 42(5),171(in Chinese).
胡亚男, 王雷刚, 黄瑶,等. 锻压技术, 2017, 42(5),171.
17 Liu Z Y, Xiong B Q, Li X W, et al. Rare Metals, 2019, 38 (10), 946.
[1] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[2] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[3] 信思树, 王镇华, 李春玲, 王清. 体心立方BCC基多元合金中的共格析出及强化[J]. 材料导报, 2020, 34(7): 7130-7137.
[4] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[5] 陈健, 周莉, 刘金洋, 吉红伟, 杨勇, 刘伟, 邓欣, 伍尚华. 真空和渗氮烧结WC-TiC-Co硬质合金的梯度结构形成机理研究[J]. 材料导报, 2020, 34(4): 4077-4082.
[6] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[7] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[8] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[9] 宗学文, 刘文杰, 张健, 杨雨蒙, 高中堂. 激光选区熔化与铸造成形TC4钛合金的力学性能分析[J]. 材料导报, 2020, 34(16): 16083-16086.
[10] 黄惠毅, 刘裔源, 唐鹏, 胡治流, 王康, 韩振尧. Co元素对Al-10Si-1.5Fe合金显微组织和力学性能的影响[J]. 材料导报, 2020, 34(16): 16087-16093.
[11] 张忠科, 赵早龙, 李德福, 郑江辉. 6082铝合金摩擦塞补焊接头微观组织与性能[J]. 材料导报, 2020, 34(16): 16094-16099.
[12] 陈会子, 黄健康, 刘世恩, 于晓全, 樊丁. Zr基大块金属玻璃与304L不锈钢脉冲激光焊接接头微观组织特性[J]. 材料导报, 2020, 34(16): 16100-16103.
[13] 陈宇强, 张文涛, 张浩, 潘素平, 李运湘, 李宁波, 欧陈贵, 伏明珠, 阳铭广. T6I6处理对Al-Si-Mg-Cu铸铝时效析出及疲劳行为的影响[J]. 材料导报, 2020, 34(14): 14122-14128.
[14] 邹田春, 欧尧, 祝贺, 秦嘉徐. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10): 10098-10102.
[15] 仇一卿, 范祝男, 黄春平, 李宝华, 唐众民. 厚板Cu-Cr-Zr合金搅拌摩擦焊接接头沿厚度方向组织和力学性能的变化[J]. 材料导报, 2020, 34(10): 10162-10165.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed