Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16094-16099    https://doi.org/10.11896/cldb.19080029
  金属与金属基复合材料 |
6082铝合金摩擦塞补焊接头微观组织与性能
张忠科1,2, 赵早龙1, 李德福1, 郑江辉1
1 兰州理工大学材料科学与工程学院,兰州 730050;
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Microstructure and Mechanical Properties of Friction Plug Welding Joint of 6082 Aluminum Alloy
ZHANG Zhongke1,2, ZHAO Zaolong1, LI Defu1, ZHENG Jianghui1
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 14887KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在不同的焊接转速下,对5 mm厚的6082铝合金进行顶锻式摩擦塞补焊实验研究,分析了塞补焊接头的金属流动性、微观组织、第二相分布、温度场、力学性能、显微硬度以及断口形貌特征。结果表明:塞补焊接头截面上层金属流动性明显优于下层;焊缝根部受摩擦热最低且金属流动性差,使其成为整个塞补焊接头的薄弱区;在摩擦界面区,塞棒大量细密的等轴晶穿插进母材板条状的晶粒中,实现了塞补焊接头的紧密连接;焊接接头不同区域β(Mg2Si)相的大小、数量及方向均有不同程度的变化;在焊接转速2 200 r/min下,焊接接头力学性能最好,接头抗拉强度达到母材的75%以上,断后伸长率达到了母材的64%以上;焊接接头断裂在塞孔与塞棒之间的摩擦界面区,裂纹从焊缝根部弱连接区域起裂并向焊缝表面扩展,断裂方式为韧性断裂;整个塞补焊接头母材侧热机影响区和热影响区结合处软化最为严重,硬度值在(60±5)HV之间。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张忠科
赵早龙
李德福
郑江辉
关键词:  6082铝合金  摩擦塞补焊(FPW)  微观组织  力学性能    
Abstract: In this work, friction plug welding (FPW) process of 5 mm thick 6082-T8 aluminium alloy with 6082-T6 plug aluminium was performed at diffe-rent welding speeds. The metal fluidity, microstructure, second phase distribution, temperature field, mechanical properties, hardness and fracture morphology of FPW joint were analyzed and tested respectively. The results show: the upper half of FPW joint section has good metal flui-dity; the lowest friction heat at the root of the weld makes it the weak zone of FPW joint; in the friction interface zone (FIZ) of FPW joint, a large number of fine equiaxed grains in plug mental (PM) penetrate into the strip grains of base metal (BM) tightly, thus realizing the close bonding of FPW joint; the size, quantity and direction of β (Mg2Si) phase in different areas of welded joints have different changes; the FPW joint has the best welding mechanical properties at the welding speed of 2 200 r/min, the tensile strength and elongation of the joint reach more than 75% and 64% of BM, respectively; at the fracture position of the joint in the FIZ, the crack extends from the weak joint zone at the root of the weld to the surface of the weld, showing ductile fracture; hardness test results indicate that the lowest hardness occurred in base thermo-mechanically affec-ted zone and heat affected zone.
Key words:  6082 aluminium alloy    friction plug welding (FPW)    microstructure    mechanical property
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TG456  
基金资助: 航空科学基金(201611U2001);甘肃省科技重大专项(18ZD2GC013)
通讯作者:  zhangzke@lut.cn   
作者简介:  张忠科,副教授,兰州理工大学硕士研究生导师,2009年毕业于兰州理工大学并获博士学位,主要从事焊接设备及其自动化与新型连接技术等方面的研究。
引用本文:    
张忠科, 赵早龙, 李德福, 郑江辉. 6082铝合金摩擦塞补焊接头微观组织与性能[J]. 材料导报, 2020, 34(16): 16094-16099.
ZHANG Zhongke, ZHAO Zaolong, LI Defu, ZHENG Jianghui. Microstructure and Mechanical Properties of Friction Plug Welding Joint of 6082 Aluminum Alloy. Materials Reports, 2020, 34(16): 16094-16099.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080029  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16094
1 Wang Q F, Wu Y. Modern Urban Transit, 2013(2), 29(in Chinese).
王庆峰, 吴越.现代城市轨道交通, 2013(2), 29.
2 Xue K Z. Modern Urban Transit, 2003, 6(1), 14(in Chinese).
薛克仲.现在城市轨道交通, 2003, 6(1), 14.
3 Yang W S. Shandong Industrial Technology, 2018(19), 33(in Chinese).
杨为三.山东工业技术, 2018(19), 33.
4 Delany F, Lucas W, Thomas W, et al. In: Proceedings of 2005 International Forum on Welding Technology in Energy Engineering. China,2005, pp. 54.
5 Howse D, Lucas W, Thomas W. In: EPRI Welding and Repair Techno-logy for Power Plant Conference. USA, 2002,pp. 26.
6 Luan G H, Ji Y J, Dong C L, et al. Transactions of the China Welding Institution, 2006, 27(10), 1(in Chinese).
栾国红, 季亚娟, 董春林, 等.焊接学报, 2006, 27(10), 1.
7 Fan P Z. Aerospace Manufacturing Technology, 2007(1), 34(in Chinese).
范平章.航天制造技术, 2007(1), 34.
8 Zhao Y H, Liu J D, Zhang L N, et al. Journal of Aeronautical Materials, 2010, 30(1), 41(in Chinese).
赵衍华, 刘景铎, 张丽娜, 等.航空材料学报, 2010, 30(1), 41.
9 Sun Z P, Song J L, Li C, et al. Welding & Joining, 2016(1), 35(in Chinese).
孙转平, 宋建岭, 李超, 等.焊接, 2016(1), 35.
10 Du B, Yang X Q, Sun Z P, et al. Journal of Materials Engineering, 2018, 46(12), 137(in Chinese).
杜波, 杨新岐, 孙转平, 等.材料工程, 2018, 46(12), 137.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[6] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[7] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[8] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[9] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[10] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[11] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[12] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[13] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[14] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[15] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed