Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8071-8076    https://doi.org/10.11896/cldb.18080117
  无机非金属及其复合材料 |
聚丙烯纤维水泥基复合材料的抗冻性能研究
靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明
西南交通大学土木工程学院,成都 610031
Research on Frost Resistance of Polypropylene Fiber Cement-based Composite Material
JIN Hesong, LI Fuhai, HE Xiaoyunfeng, WANG Jiangshan, HU Dinghan, HU Zhiming
School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 7463KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善桥梁伸缩缝处混凝土结构的冻害问题,本试验成功制备了加入聚丙烯纤维的超韧性水泥基复合材料(PP-ECC),对其进行了抗冻性能研究,采用先干搅再湿搅的搅拌工艺,并以试件质量损失为评价指标,分析了冻融循环条件下材料的抗冻性能;以抗压、抗折、抗拉等指标为依据,研究了该复合材料经受不同冻融次数后的力学性能变化,并对PP-ECC的体积膨胀变形进行了时程分析。结果表明,随着冻融次数的增加,抗压、抗折、抗拉强度呈下降趋势,试件质量损失逐渐增大;冻融体积膨胀应变随着冻融温度的交替升降也呈现出时程规律性变化,此外,最大膨胀应变随着冻融次数的增加而明显增大。最后通过在相同冻融循环次数后与普通混凝土相对比,可知PP-ECC材料的基本性能指标,包括质量损失率、抗压强度、极限抗拉强度、极限拉应变、抗折强度以及抗冻融体积膨胀变形性能等仍能保持较高的水平,极限拉应变是普通混凝土的120~400倍,有显著的拉伸韧性,并且300次冻融循环后PP-ECC的质量损失率低于5%,该研究成果可为PP-ECC在国内寒冷地带桥梁伸缩缝无缝化的推广应用提供一定的理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
靳贺松
李福海
何肖云峰
王江山
胡丁涵
胡志明
关键词:  桥梁无缝化  聚丙烯纤维工程水泥基复合材料  抗冻性能  力学性能  冻融体积膨胀变形    
Abstract: In order to improve the freezing damage of the concrete structure at the expansion joint of the bridge, this paper designed and prepared a super toughness cement-based composite material (PP-ECC) with polypropylene fiber and studied the antifreeze performance. The mixing process was carried out, and the quality loss of the specimen was used as the evaluation index. The frost resistance of the material under freeze-thaw cycle conditions was analyzed. Based on the indexes of compression resistance, flexural strength and tensile strength, the mechanical pro-perties of the composites subjected to different freeze-thaw cycles were studied, and the time-expansion analysis of the volume expansion deformation of PP-ECC was carried out.The results show that with the increase of the number of freeze-thaw cycles, the mechanical strength shows a downward trend, and the quality loss of the test piece gradually increases. The freezing and thawing volume expansion strain also shows a re-gular variation of the time course with the alternate lifting of the freezing and thawing temperature. In addition, the maximum expansion strain increases significantly with the increase of the number of freeze-thaw cycles. Finally, by comparing the ordinary concrete of the existing research li-terature, the basic performance indexes of PP-ECC materials after the same number of freeze-thaw cycles can be analyzed, including mass loss rate, compressive strength, ultimate tensile strength, ultimate tensile strain, and resistance. The folding strength and the anti-freeze-thaw volume expansion deformation performance can still maintain a high level, the ultimate tensile strain is about 120—400 times that of ordinary concrete, has significant tensile toughness, and the mass loss rate after 300 freeze-thaw cycles. Below 5%, the research results can provide a theoretical reference for the promotion of PP-ECC seamless expansion of bridge expansion joints in the cold regions of China.
Key words:  jointless bridge    polypropylene fiber engineering cement-based composite material    frost resistance    mechanical properties    freeze-thaw volume expansion deformation
                    发布日期:  2020-04-25
ZTFLH:  TU502+.6  
  TU528.58  
基金资助: 国家自然科学基金(51308471);国家重点研发计划(2016YFB0303603-4);中央高校基本科研业务费专项资金(2682015ZD13)
通讯作者:  qixingye2003@163.com   
作者简介:  靳贺松,2019年6月毕业于西南交通大学,获得工程硕士学位。在读期间,主要从事桥梁结构和混凝土耐久性领域的研究。在国内外重要期刊发表文章20余篇。
李福海,2012年毕业于西南交通大学,工学博士学位,西南交通大学国家级土木工程实验教学示范中心副主任,西南交通大学土木工程学院建筑材料实验室副主任,主要从事混凝土结构及耐久性研究。在国内外重要期刊发表文章70多篇,申报专利12项。
引用本文:    
靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
JIN Hesong, LI Fuhai, HE Xiaoyunfeng, WANG Jiangshan, HU Dinghan, HU Zhiming. Research on Frost Resistance of Polypropylene Fiber Cement-based Composite Material. Materials Reports, 2020, 34(8): 8071-8076.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080117  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8071
1 Ding Yong, Huang Qi, Xie Xu, et al. China Civil Engineering Journal, 2013, 46(7),98(in Chinese).
丁勇,黄奇,谢旭,等. 土木工程学报,2013,46(7),98.
2 Edwin G, Burdette. In: The 2005 FHWA CONFERENCE “Integral Abutments and Jointless Bridges(IAJB2005), Baltimore,2005.pp.222.
3 Li V C,Banthia N, Bentur A. In: Fiber Reinforced Concrete: Present and the Future. Montreal Canadian,1998,pp.64.
4 Liu Shuguang, Chang Zhihui, Zhang Dongxiang, et al. Concrete in Cement Products,2016(2), 80(in Chinese).
刘曙光,常智慧,张栋翔,等. 混凝土于水泥制品,2016(2),80.
5 Lepech M D, Li V C. Materials and Structures,2009, 42(9),1185.
6 Xu Shilang. Journal of Hydraulic Engineering, 2009,40(9),1055(in Chinese).
徐世烺. 水利学报,2009,40(9),1055.
7 Yu Tingxi. Bridge and Tunnel Engineering, 2014(5),220(in Chinese).
余廷禹. 桥隧工程, 2014(5),220.
8 Rokogo K,Kanda T.In: Proceedings of International workshop on HPFRCC in Structural Applications, Hawaii, USA, 2005,pp. 23.
9 Cai Xinhua. Durability test of ultra-high toughness cement-based compo-sites, Ph.D. Thesis, Dalian University of Technology, China, 2010(in Chinese).
蔡新华. 超高韧性水泥基复合材料耐久性能试验研究.博士学位论文,大连理工大学,2010.
10 GB/T 1596-2005.用于水泥和混凝土中的粉煤灰.中国建筑工业出版社,2005.
11 GB/T 50082-2009. 普通混凝土长期性能和耐久性能试验方法标准. 中国建筑工业出版社,2009.
12 JG/T243-2009. 混凝土抗冻融试验设备. 中国建筑工业出版社,2009.
13 GB/T 5081—2002. 普通混凝土力学性能试验方法标准. 中国建筑工业出版社,2003.
14 Xu Shilang, Cai Xinhua, Li Hedong. China Civil Engineering Journal, 2009, 42(9),42(in Chinese).
徐世烺,蔡新华,李贺东.土木工程学报,2009,42(9),42.
15 Zhou Shuang. Experimental study on fiber reinforced cement-based composites and its application prospects in bridges. Master’s Thesis, Southwest Jiaotong University, China, 2017(in Chinese).
周双. 纤维增强水泥基复合材料试验研究及在桥梁无缝化中的应用展望.硕士学位论文,西南交通大学, 2017.
16 Shang Huaishuai, Song Yupu, Yan Likun. Concrete & Cement Products, 2005(2), 9(in Chinese).
商怀帅,宋玉普,覃丽坤.混凝土与水泥制品,2005(2),9.
17 GBJ50164—92. 混凝土质量控制标准, 中国建筑工业出版社,2012.
18 Xu Yading, Wang Ling, Wang Zhendi. Bulletin of the Chinese Ceramic Society, 2017, 36(2), 491(in Chinese).
徐亚丁,王玲,王振地. 硅酸盐通报,2017,36(2),491.
19 Victor C L, Leung C K Y. Journal of Engineering Mechanics,1992,118(11), 2246.
20 Jiang Xuejie, Wang Shuxiang. Architecture Technology,2006,37(2),135(in Chinese).
姜雪洁,王书祥.建筑技术,2006,37(2),135.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 周文娟, 张志伟, 徐玉波. 建筑垃圾再生骨料无机混合料的力学及抗冻性能[J]. 材料导报, 2020, 34(Z1): 234-236.
[6] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[7] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[8] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[9] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[10] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[11] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[12] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[13] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[14] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[15] 信思树, 王镇华, 李春玲, 王清. 体心立方BCC基多元合金中的共格析出及强化[J]. 材料导报, 2020, 34(7): 7130-7137.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed