Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7130-7137    https://doi.org/10.11896/cldb.19030130
  金属与金属基复合材料 |
体心立方BCC基多元合金中的共格析出及强化
信思树1, 王镇华2, 李春玲2, 王清2
1 昆明物理研究所,昆明 650000;
2 大连理工大学材料科学与工程学院,三束材料改性教育部重点实验室,大连116024
Coherent Precipitation and Strengthening in Body-Centered-Cubic-based Multi-component Alloys
XIN Sishu1, WANG Zhenhua2, LI Chunling2, WANG Qing2
1 Kunming Institute of Physics, Kunming 650000, China;
2 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
下载:  全 文 ( PDF ) ( 4033KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 固溶体基体上析出的第二相粒子的种类、形貌(大小和形状)以及分布,对提升合金的力学性能具有决定性作用,其中第二相粒子的共格析出更有利于提升合金的高温力学性能。例如,正是由于立方形态的L12-Ni3Al 有序超结构相在FCC固溶体基体的共格析出,才使得Ni基高温合金具有优异的高温力学性能。近年来,体心立方(BCC)基多元合金中的第二相共格析出强化使得该类合金展现出优异的力学性能,尤其是优异的高温强度,引起了广泛关注。
   在传统的BCC基工程合金材料中,主要采用非共格和半共格析出相对合金进行强化,然而第二相粒子在时效过程中易发生粗化,使得合金脆性增加,从而导致合金对工艺异常敏感。最新研究表明,在BCC基多主元合金中,可实现有序B2(L21)相在无序BCC基体上的共格析出,有望改善BCC基合金的强韧性。目前,获得的共格组织多表现为编织网状的调幅分解组织,很难实现球形或立方形态的共格纳米粒子析出,这也会造成合金具有极大的脆性,故如何在BCC基多主元合金中获得立方形或球形的共格粒子是目前的研究热点。
   研究表明,基体与有序析出相间的点阵错配度是决定析出粒子形状和大小的最关键因素,故通过调节多主元合金中的元素类型及含量来调控BCC基体和有序析出相(B2/L21)的成分,以调节二者的点阵错配,可以获得期望的共格组织。如BCC基特种钢和高熵合金中,通过调控成分可以调整BCC基体与共格B2相之间的点阵错配,继而使球形/立方形的B2粒子共格析出在BCC基体上,以获得一系列性能优异的BCC基特种钢及高熵合金。
   本文详细总结了几种典型的BCC基多元合金(如特种钢、高熵合金等)中共格析出相粒子的形貌、分布及力学性能;讨论了点阵错配度与析出粒子形貌之间的关系;并阐述了析出强化的机制;最后对共格析出强化的BCC基多元合金的发展及应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
信思树
王镇华
李春玲
王清
关键词:  BCC基多元合金  共格析出  微观组织  力学性能    
Abstract: The type, morphology (size and shape), and distribution of the second-phase particles precipitated on the solid solution matrix are dominant on the improvement of mechanical strengths of alloys. In particular, the coherent precipitation of particles is more beneficial to enhance the high-temperature mechanical properties of alloys. For example, it is the coherent precipitation of cubic L12-Ni3Al ordered phase in FCC solid solution matrix that renders Ni-based superalloys with excellent high-temperature mechanical properties. Recently, the body-centered-cubic (BCC)-based multi-component alloys containing coherent precipitates have attracted extensive attention due to their prominent mechanical properties (especially high strength at elevated temperatures) induced by precipitation strengthening.
However, the non-coherent or half-coherent precipitated phases were often used to strengthen the matrix in conventional BCC-based enginee-ring alloys, which induces the coarsening of the second-phase precipitates during the aging period and embrittles alloys. Such alloys are generally sensitive to the post-processing. Recently, the ordered phase B2(L21) precipitation into disordered BCC matrix could be achieved in multi-principal alloy systems, which has great potential to improve the strength and toughness of alloys. The existing results show that BCC/B2 coherent microstructure exhibits a weave-like spinodal decomposition and it is difficult to precipitated the spherical or cuboidal B2/L21 nanoparticles, which also leads to a serious brittleness. Therefore, how to obtain cubic or spherical coherent particles in BCC-based multi-component alloys is a research hotspot.
It has been demonstrated that the lattice mismatch between the matrix and ordered phases is the most critical factor to determine the shape and size of precipitates. Therefore, the compositions of the BCC matrix and the ordered phase can be regulated by adjusting the species and amounts of alloying elements in alloys for the achievement of an optimum lattice mismatch matching the desired coherent microstructure. For example, in BCC-based special steels and high-entropy alloys, the spherical or cuboidal B2 nanoparticles were coherently precipitated into the BCC matrix through adjusting the lattice mismatch between BCC and B2 phases, by which a series of BCC-based special steels and high-entropy alloys with excellent properties could be obtained.
The present work summarizes comprehensively the phase structures and morphologies of coherent precipitates in several typical BCC-based alloys, such as special steels and high-entropy alloys. The mechanical properties of these alloys are also generalized. Then, the relationship between the lattice misfit and the particle morphology, and the mechanism of precipitation strengthening are illuminated. Finally, the development and application of coherently precipitation-strengthened BCC-based alloys are prospected.
Key words:  BCC-based multi-component alloys    coherent precipitation    microstructure    mechanical properties
                    发布日期:  2020-04-10
ZTFLH:  TG139  
基金资助: 国家自然科学基金重点联合项目(U1867201)
通讯作者:  wangq@dlut.edu.cn   
作者简介:  信思树,昆明物理研究所高级工程师,凝聚态物理专业,材料物理方向,主要从事Ⅲ-Ⅴ材料制备、器件研发和少量结构材料研究工作。涉及的材料研究主要是锑化铟、砷化镓和高性能钛/锆合金材料等。
王清,大连理工大学教授,博士研究生导师,主要从事发展合金设计方法和研发先进工程合金材料的工作,涉及的合金体系主要有高性能钛/锆合金、导电铜合金、核电反应堆用特种不锈钢、高熵合金等。近五年,主持国家自然科学基金2项,辽宁省自然科学基金1项,中国核动力设计研究院国家重点实验室基金2项;作为骨干参加国家十三五重点研发计划2项,国家自然科学基金重点项目和面上项目3项,国家科技计划国际合作专项项目1项等;参加企业合作项目4项。在Scripta Mater.,Scientific Reports,Materials & Design等期刊上发表文章80余篇,申请和授权专利二十余项;多次在本领域内重要国内外学术会议做邀请报告。
引用本文:    
信思树, 王镇华, 李春玲, 王清. 体心立方BCC基多元合金中的共格析出及强化[J]. 材料导报, 2020, 34(7): 7130-7137.
XIN Sishu, WANG Zhenhua, LI Chunling, WANG Qing. Coherent Precipitation and Strengthening in Body-Centered-Cubic-based Multi-component Alloys. Materials Reports, 2020, 34(7): 7130-7137.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030130  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7130
1 Argon A. Strengthening mechanisms in crystal plasticity, Oxford University Press, Oxford,UK, 2007.
2 Hosford W F. Mechanical behavior of materials, 1st ed, Cambridge University Press,New York, USA, 2005.
3 Meyers M A, Chawla K K, Mechanical behavior of materials, 2nd edition, Cambridge University Press,Cambridge, UK, 2009.
4 Ardell A J. Metallurgical Transactions A, 1985, 16A,985.
5 Reed R C. The superalloys: fundamentals and applications, Cambridge University Press, New York, USA, 2006
6 Wang X G, Liu J L, Jin T, et al. Materials and Design, 2014, 63,286.
7 Lyu Z P, Jiang S H, He J Y, et al. Acta Metallurgica Sinica, 2016, 52(10), 1183(in Chinese).
吕昭平, 蒋虽合, 何骏阳, 等.金属学报, 2016, 52(10), 1183.
8 Wang Q, Li Z, Pang S J, et al. Entropy, 2018, 20(11), 878.
9 Jiang S H, Wang H, Wu Y, et al. Nature, 2017, 544, 460.
10 Song G, Sun Z Q, Li L, et al. Scientific Reports, 2015, 5, 16327.
11 Ma Y, Wang Q, Jiang B B, et al. Acta Materialia, 2018, 147, 213.
12 Li C L, Ma Y, Hao J M, et al. Materials Science and Engineering A, 2018, 737, 286.
13 Xu W Q, Birbilis N, Sha G, et al. Nature Materials, 2015, 14(12), 1229.
14 Teng Z K, Liu C T, Ghosh G, et al. Intermetallics, 2010, 18, 1437.
15 Jiao Z B, Luan J H, Zhang Z W, et al. Scripta Materialia, 2014, 87,45.
16 Stepanova N D, Shaysultanov D G, Tikhonovsky M A, et al. Intermetallics, 2018, 102, 140.
17 Wang Q, Ma Y, Jiang B B, et al. Scripta Materialia, 2016, 120, 85.
18 Zhou Y, Jin X, Zhang L, et al. Materials Science and Engineering A, 2018, 716, 235.
19 Stepanov N D, Shaysultanov D G, Chernichenko R S, et al. Journal of Alloys and Compounds, 2019, 770, 194.
20 Wang W R, Wang W L, Wang S C, et al. Intermetallics, 2012, 26, 44.
21 Zhang K B, Fu Z Y, Zhang J Y, et al. Materials Science and Engineering A, 2009, 508,214.
22 He J Y, Liu W H, Wang H, et al. Acta Materialia, 2014, 62, 105.
23 Zhang L, Zhou D, Li B S. Materials Letters, 2018, 216, 252.
24 Feng R, Gao M C, Zhang C, et al. Acta Materialia, 2018, 146, 280.
25 Zhuang Y X, Xue H D, Chen Z Y, et al. Materials Science and Engineering A, 2013, 572, 30.
26 Soni V, Senkov O N, Gwalani B, et al. Scientific Reports, 2018, 8(1), 8816.
27 Senkov O N, Isheim D, Seidman D N, et al. Entropy, 2016, 18(3), 102.
28 Yurchenko N Y, Stepanov N D, Zherebtsov S V, et al. Materials Science and Engineering A, 2017, 704, 82.
29 Sachadel U A, Morris P F, Clarke P D. Materials Science and Tenchnology, 2012, 29, 767.
30 Wang Y, Mayer K H, Scholz A, et al. Materials Science and Engineering A, 2009, 510, 180.
31 Aghajani A, Somsen C, Eggeler G. Acta Materialia, 2009, 57(17), 5093.
32 Kostka A, Tak K G, Hellmig R J, et al. Acta Materialia, 2007, 55(2), 539.
33 Kostka A, Tak K G, Hellmig R J, et al. Acta Materialia, 2007, 55, 539.
34 Pearson W B, Villars P, Calvert L D. Pearson’s handbook of crystallographic data for intermetallic phases, ASM International, America,1986.
35 Sun Z Q, Song G, Ilavsky J. Materials Research Letters, 2015, 3, 128.
36 Teng Z K, Liu C T, Miller M K, et al. Materials Science and Engineering A, 2012, 541, 22.
37 Teng Z K, Zhang F, Miller M K, et al. Intermetallics, 2012, 29, 110.
38 Liebscher C H, Radmilovic V, Dahmen U, et al. Journal of Materials Science, 2013, 48, 2067.
39 Song G, Sun Z Q, Li L, et al. Scientific Reports, 2015, 5, 16327.
40 Jiao Z B, Luan J H, Zhang Z W, et al. Acta Materialia, 2013, 61(16), 5996.
41 Rawlings M J S, Liebscher C H, Asta M, et al. Acta Materialia, 2017, 128, 103.
42 Liebscher C H, Radmilovic V R, Dahmen U, et al. Acta Materialia, 2015, 92, 220.
43 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring A, 2004, 375-377(1), 213.
44 Chen T K, Shun T T, Yeh J W, et al. Surface and Coatings Technology, 2004, 188(5), 193.
45 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
46 Gao M C, Liaw P K, Yeh J W, et al. High-entropy alloys: fundamentals and applications, Springer, International Publishing, Cham, Switzerland, 2016.
47 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61(8), 1.
48 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345,1153.
49 Sun S J, Tian Y Z, Lin H R, et al. Materials and Design, 2017, 133, 122.
50 Wang Y P, Li B S, Ren M X, et al. Materials Science and Engineering A, 2008, 491, 154.
51 Polvani R S, Tzeng W S, Strutt P R. Metallurgical Transactions A, 1976, 7(1), 33.
52 Strutt P R, Polvani R S, Ingram J C. Metallurgical Transactions A, 1976, 7(1), 23.
53 Senkov O N, Miracle D B, Chaput K J. Journal of Materials and Research, 2018, 33, 3092.
54 Senkov O N, Wilks G B, Miracle D B, et al. Intermetallics, 2010, 18, 1758.
55 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics, 2011, 19, 698.
56 Guo N N, Wang L, Luo L S, et al. Materials and Design, 2015, 81, 87.
57 Wu Y D, Cai Y H, Wang T, et al. Materials Letters, 2014, 130(3), 277.
58 Jensen J K, Welka B A, Williams R E A, et al. Scripta Materialia, 2016, 121, 1.
59 Senkov O N, Senkov S V, Woodward C.Acta Materialia, 2014, 68, 214.
60 Pi J H, Pan Y, Lu Z G, et al. Journal of Alloys and Compounds, 2011, 509, 5641.
61 Shun T T, Chang L Y, Shiu M H. Materials Science and Engineering A, 2012, 556, 170.
62 Senkov O N, Senkova S V, Woodward C, et al. Acta Materialia, 2013, 61(5), 1545.
63 Senkov O N, Senkova S V, Miracle D B, et al. Materials Science and Engineering A, 2013, 565(5), 51.
64 Freeth W E, Raynor G V. Journal of the Institute of Metals,1954, 82, 575.
65 Zhong H, Feng L P, Liu P Y, et al. Journal of Computer-Aided Materials Design, 2003, 10, 191.
66 Voorhees P W, Mcfadden G B, Johnson W C. Acta Metallurgica et Materialia, 1992, 40, 2979.
67 Thompson M E, Su C S, Voorhees P W. Acta Metallurgica et Materialia, 1994, 42, 2107.
68 Choudhuri D, Alam T, Borkar T, et al. Scripta Materialia, 2015, 100, 36.
69 Jansson B, Melander A. Scripta Metallurgy, 1978, 12(6), 497.
70 Gerold V, Haberkorn H. Physica Status Solidi, 1966,16(2), 675.
71 Nembach E. Physica Status Solidi, 1983, 78, 571.
72 ASM International Handbook committee. Properties and Selection: Irons, Steels and High Performance Alloys, ASM International, America, 1993.
73 Hong T, Freeman A J. Physical Review B Condensed Matter, 1991, 43, 6446.
74 He J Y, Wang H, Huang H L,et al. Acta Materialia, 2016, 102, 187.
75 He J Y, Wang H, Wu Y, et al. Intermetallics, 2016, 79, 41.
[1] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[2] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[3] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[4] 刘钊扬, 熊柏青, 张永安, 李志辉, 李锡武, 闫丽珍, 温凯. 汽车车身板用6A16铝合金拉深成形金属流动和微观组织相关性研究[J]. 材料导报, 2020, 34(8): 8119-8125.
[5] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[6] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[7] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[8] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[9] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[10] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[11] 陈健, 周莉, 刘金洋, 吉红伟, 杨勇, 刘伟, 邓欣, 伍尚华. 真空和渗氮烧结WC-TiC-Co硬质合金的梯度结构形成机理研究[J]. 材料导报, 2020, 34(4): 4077-4082.
[12] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[13] 贾宝华, 刘翔, 顾永强, 李革. Yb2O3对Ti-1100铸态合金高温力学性能的影响[J]. 材料导报, 2020, 34(4): 4087-4092.
[14] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[15] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed