Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7138-7145    https://doi.org/10.11896/cldb.19020149
  金属与金属基复合材料 |
镁合金板材轧制成形边裂的研究进展
刘江林1,2,3, 齐艳阳1,2,3, 王涛1,2,3, 王跃林1,2,3, 任忠凯1,2,3, 韩建超1,2,3
1 太原理工大学机械与运载工程学院,太原 030024;
2 太原理工大学先进金属复合材料成形技术与装备教育部工程研究中心,太原 030024;
3 太原理工大学中澳联合研究中心,太原 030024
Research Progress of Edge Cracks During Rolling of Magnesium Alloy Sheets
LIU Jianglin1,2,3, QI Yanyang1,2,3, WANG Tao1,2,3, WANG Yuelin1,2,3, REN Zhongkai1,2,3, HAN Jianchao1,2,3
1 College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
2 Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;
3 TYUT-UOW Joint Research Center, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 2371KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金是近年来国家重点发展的金属结构材料之一,其具有质量轻、比强度高、弹性模量大等优点,同时具有良好的减震降噪和抗冲击等性能,被广泛应用到国民经济和工业生产等诸多领域。深入开展镁合金关键技术问题研究,对解决当前能源结构、产业结构的突出问题具有非常重要的意义。
   轧制是生产镁合金板材的常用方法之一,该生产工艺可以细化镁合金板材的组织,提高其力学性能,且具有连续化批量生产的优势。然而,镁合金板材在轧制过程中极易出现边裂,由此产生的大量切边废料严重影响了镁合金板材的成材率和材料利用率,限制了该材料的进一步发展。
   针对镁合金板材轧制过程中出现的边裂问题,近几年学者们采用在线加热、包覆轧制、衬板轧制、异步轧制、预制凸度、模型预测等方法对镁合金板材轧制成形进行了研究,并取得了积极的效果。这为制备无边裂或少边裂的镁合金板材提供了可能,且其工业化生产将带来巨大的经济效益。
   本文归纳了国内外镁合金板材轧制成形边裂的研究进展,简述了镁合金板材轧制成形易产生边裂的宏微观原因,分类总结了轧制温度、压下制度、轧制速度和应力状态等宏观因素对边裂产生的机理及影响规律,并从晶体的结构、织构、组织均匀性、孪晶和脆性相等微观角度分析了镁合金板材边裂的机制。基于镁合金板材轧制边裂的宏微观机制及影响规律,总结了减轻边裂的方法,即通过改变轧制方式、转换轧制路径、改进成分设计等手段减少镁合金板材轧制成形边裂的产生,同时分析了目前研究中存在的不足并对今后的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘江林
齐艳阳
王涛
王跃林
任忠凯
韩建超
关键词:  镁合金  板材  轧制  边裂    
Abstract: Magnesium alloy is one of the most important metal structural materials in recent years. It has the advantages of light weight, high specific strength, large elastic modulus, good shock absorption, noise reduction and impact resistance. It has been widely used in many fields such as national economy and industrial production. In-depth research on key technologies of magnesium alloys is of great significance for solving the prominent problems of energy structure and industrial structure.
Rolling is one of the commonly used methods to produce magnesium alloy sheets, which can refine the microstructure, improve mechanical properties, and have the advantage of continuous mass production. However, a large number of edge cracks will occur in the rolling process of magnesium alloy sheets, and the resulting large amount of trimming waste seriously affects the yield and material utilization rate of magnesium alloy sheets, which limits and restricts the further development of this material.
To solve the problem of edge cracks during rolling of magnesium alloy sheets, researchers have studied the rolling process of magnesium alloy sheets by on-line heating, wrap rolling, hard-plate rolling, differential speed rolling, prefabricated crown, model prediction and other methods in recent years. The positive results have been achieved, which provides a possibility for the preparation of magnesium alloy sheets without edge cracks or with few edge cracks. Its industrialized production will bring enormous economic benefits in the future.
In this paper, the research progress of edge cracks during rolling of magnesium alloy sheets at home and abroad is reviewed. The macroscopic and microscopic causes of edge cracks during rolling of magnesium alloy sheets are briefly described. The mechanism and influence rule of edge cracks caused by macroscopic factors such as rolling temperature, reduction system, rolling speed and stress state are classified and summarized. The microscopic factors, including the crystal structure, texture, microstructure uniformity, twin and brittle phase are also discussed. The methods of reducing edge cracks are summarized based on the macro-microscopic mechanism and influence rule of edge cracks during rolling of magnesium alloy sheets. The edge cracks of magnesium alloy sheets are reduced by changing rolling mode, converting rolling path and improving composition design. Meanwhile, the shortcomings of current research are analyzed and the future research is prospected.
Key words:  magnesium alloys    sheet    rolling    edge cracks
                    发布日期:  2020-04-10
ZTFLH:  TG335.1  
基金资助: 国家自然科学基金重点项目(U1710254);山西省高等学校科技创新基金(2017132);山西省自然科学基金(201701D221143);山西省科技重大专项(20181102011);太原市科技重大专项(170203)
通讯作者:  tyutwt@yeah.net   
作者简介:  刘江林,太原理工大学讲师。2007年7月本科毕业于太原科技大学材料科学与工程学院,2017年12月在西北工业大学材料学院材料加工工程专业取得博士学位,2018年1月至今为太原理工大学机械与运载工程学院讲师。主要从事钛合金及镁合金等难变形材料先进成形技术及仿真研究。近年来,在钛合金领域发表论文10余篇,包括Materials Science and Engineering A、Journal of Materials and Engineering PerformanceRare Metal Materials and Engineering等。
王涛,太原理工大学副教授。2007年7月本科毕业于燕山大学机械工程学院,2013年1月在燕山大学机械工程学院机械设计及理论专业取得博士学位,2016年5月至今先后为太原理工大学机械与运载工程学院讲师、副教授。主要从事复合材料成形、轧制工艺与设备研究。近年来,在轧制成形领域发表论文10余篇,包括Materials Science and Engineering A、Materials Letters、Chinese Journal of Mechanical EngineeringJournal of Iron and Steel Research International等。
引用本文:    
刘江林, 齐艳阳, 王涛, 王跃林, 任忠凯, 韩建超. 镁合金板材轧制成形边裂的研究进展[J]. 材料导报, 2020, 34(7): 7138-7145.
LIU Jianglin, QI Yanyang, WANG Tao, WANG Yuelin, REN Zhongkai, HAN Jianchao. Research Progress of Edge Cracks During Rolling of Magnesium Alloy Sheets. Materials Reports, 2020, 34(7): 7138-7145.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020149  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7138
1 Gupta M, Wong W L E. Materials Characterization, 2015, 105, 30.
2 Alaneme K K, Okotete E A. Journal of Magnesium and Alloys, 2017, 5(4), 460.
3 Jia W T, Ma L F, Le Q C, et al. Journal of Alloys and Compounds, 2019, 783, 863.
4 Xu T C, Yang Y, Peng X D, et al. Journal of Magnesium and Alloys, 2019, 7(3), 536.
5 Pan F S, Han E H. High performance wrought magnesium alloy and its processing technology, Science Press, China, 2007(in Chinese).
潘复生, 韩恩厚. 高性能变形镁合金及加工技术, 科学出版社, 2007.
6 Sun C C, Zhou J X, Zhao D Q, et al. Materials Review A: Review Papers, 2017, 31(10), 60(in Chinese).
孙翠翠, 周吉学, 赵东清, 等. 材料导报: 综述篇,2017, 31(10), 60.
7 Hamad K, Ko Y G. Scientific Reports, 2016, 6(1), 29954.
8 Riedel H, Andrieux F, Walde T, et al. Steel Research International, 2007, 78(10-11), 818.
9 Ning F K, Jia W T, Hou J, et al. Materials Research Express, 2018, 5(5), 056528.
10 Huang Z Q, Huang Q X, Wei J C, et al. Journal of Materials Processing Technology, 2017, 246, 85.
11 Liu Q, Song J F, Pan F S, et al. Metals, 2018, 8(10), 860.
12 Zhi C C, Ma L F, Huang Q X, et al. Journal of Materials Processing Technology, 2018, 255, 333.
13 Masoudpanah S M, Mahmudi R. Materials Science and Engineering A, 2009, 526(1-2), 22.
14 Zhang D F, Dai Q W, Hu Y B, et al. Journal of Materials Engineering, 2009(10), 85(in Chinese).
张丁非, 戴庆伟, 胡耀波, 等. 材料工程, 2009(10), 85.
15 Pan F S, Zeng B, Jiang B, et al. Journal of Alloys and Compounds, 2017, 693, 414.
16 Manabe S, Utsunomiya H, Sakai T, et al. Advanced Materials Research, 2014, 922, 469.
17 Jia W T, Le Q C. Materials and Design, 2017, 121, 288.
18 Nishimura K, Miyazaki N. Computational Materials Science, 2004, 31(3-4), 269.
19 Zhang D F, Dai Q W, Fang L, et al. Transactions of Nonferrous Metals Society of China, 2011, 21(5), 1112.
20 Ding Y P, Zhu Q, Le Q C, et al. Journal of Materials Processing Technology, 2015, 225, 286.
21 Chang L L, Shang E F, Wang Y N, et al. Materials Characterization, 2009, 60(6), 487.
22 Del Valle J A, Pérez-Prado M T, Ruano O A. Materials Science and Engineering A, 2003, 355(1-2), 68.
23 Pérez-Prado M T, Del Valle J A, Contreras J M, et al. Scripta Materialia, 2004, 50(5), 661.
24 Fatemi-Varzaneh S M, Zarei-Hanzaki A, Haghshenas M. Journal of Alloys and Compounds, 2009, 475(1-2), 126.
25 Ding Y P, Le Q C, Zhang Z Q, et al. Journal of Northeastern University (Natural Science), 2014, 35(3), 379(in Chinese).
丁云鹏, 乐启炽, 张志强, 等. 东北大学学报(自然科学版), 2014, 35(3), 379.
26 Jia W T, Tang Y, Ning F K, et al. Journal of Materials Science & Technology, 2018, 34(11), 2051.
27 Guo F, Zhang D F, Yang X S, et al. Materials Science and Engineering A, 2014, 607, 383.
28 Liu X, Zhu B W, Wu Y Z, et al. The Chinese Journal of Nonferrous Me-tals, 2019, 29(2), 232(in Chinese).
刘筱, 朱必武, 吴远志, 等. 中国有色金属学报, 2019, 29(2), 232.
29 Ding Y P, Le Q C, Zhang Z Q, et al. Journal of Materials Processing Technology, 2016, 233, 161.
30 Sakai T, Utsunomiya H, Koh H, et al. Materials Science Forum, 2007, 539-543, 3359.
31 Sanjari M, Kabir A S H, Farzadfar A, et al. Journal of Materials Scie-nce, 2014, 49(3), 1426.
32 Su J, Sanjari M, Kabir A S H, et al. Materials Science and Engineering A, 2015, 636, 582.
33 Li H, Hsu E, Szpunar J, et al. Journal of Materials Science, 2008, 43(22), 7148.
34 Koh H, Sakai T, Utsunomiya H, et al. Materials Transactions, 2007, 48(8), 2023.
35 Sanjari M, Farzadfar S A, Utsunomiya H, et al. Materials Science and Technology, 2012, 28(8), 928.
36 Zhang D F, Xu X X, Lan W, et al. Journal of Materials Engineering, 2011(11), 68(in Chinese).
张丁非, 徐杏杏, 兰伟, 等. 材料工程,2011(11), 68.
37 Pekguleryuz M, Celikin M, Hoseini M, et al. Journal of Alloys and Compounds, 2012, 510(1), 15.
38 Xie H B, Jiang Z Y, Yuen W Y D. Tribology International, 2011, 44(9), 971.
39 Jia W T, Ma L F, Tang Y, et al. Rare Metal Materials and Engineering, 2017, 46(10), 2763.
40 Jia W T, Le Q C, Tang Y, et al. Journal of Materials Science & Techno-logy, 2018, 34(11), 2069.
41 Zhang D F, Dai Q W, Fang L, et al. The Chinese Journal of Nonferrous Metals, 2011, 21(1), 185(in Chinese).
张丁非, 戴庆伟, 方霖, 等. 中国有色金属学报, 2011, 21(1), 185.
42 Dai Q W, Zhang D F, Lan W, et al. Acta Metallurgica Sinica (English Letters), 2010, 23(2), 154.
43 You S, Huang Y, Kainer K U, et al. Journal of Magnesium and Alloys, 2017, 5(3), 239.
44 Parks D M, Ahzi S. Journal of the Mechanics and Physics of Solids, 1990, 38(5), 701.
45 Matsubara K, Miyahara Y, Horita Z, et al. Metallurgical and Materials Transactions A, 2004, 35(6), 1735.
46 Jin Q, Shim S Y, Lim S G. Scripta Materialia, 2006, 55(9), 843.
47 Tang W Q, Zhang S R, Fan X H, et al. The Chinese Journal of Nonferrous Metals, 2010, 20(3), 371(in Chinese).
唐伟琴, 张少睿, 范晓慧, 等. 中国有色金属学报, 2010, 20(3), 371.
48 Zhang H, Cheng W L, Fan J F, et al. Materials Science and Engineering A, 2015, 637, 243.
49 Iwanaga K, Tashiro H, Okamoto H, et al. Journal of Materials Processing Technology, 2004, 155-156, 1313.
50 Dreyer C E, Chiu W V, Wagoner R H, et al. Journal of Materials Processing Technology, 2010, 210(1), 37.
51 Yang H B, Hu S P. The Chinese Journal of Nonferrous Metals, 2014, 24(8), 1953(in Chinese).
杨海波, 胡水平. 中国有色金属学报, 2014, 24(8), 1953.
52 Jin L, Dong J, Wang R, et al. Materials Science and Engineering A, 2010, 527(7-8), 1970.
53 Wu S K, Chou T S, Wang J Y. Material Science Forum, 2003, 419-422, 527.
54 Mabuchi M, Chino Y, Iwasaki H, et al. Materials Transactions, 2001, 42(7), 1182.
55 Misra R D K, Nathani H, Siciliano F, et al. Metallurgical and Materials Transactions A, 2004, 35(9), 3024.
56 Dai Q W, Zhang D F, Fang L, et al. Materials Science and Technology, 2012, 28(4), 415.
57 Dai Q W, Lan W, Chen X. Journal of Engineering Materials and Technology, 2014, 136(1), 011005.
58 Liu F X, Yuan W M, Tang X, et al. Journal of Materials Engineering, 1996(9), 25(in Chinese).
刘发信, 袁文明, 汤鑫, 等. 材料工程, 1996(9), 25.
59 Jin Q, Lim S G, You B S. Material Science Forum, 2005, 475-479, 533.
60 Liu Q. Acta Metallurgica Sinica, 2010, 46(11), 1458(in Chinese).
刘庆. 金属学报, 2010, 46(11), 1458.
61 Bach F W, Rodman M, Rossberg A, et al. JOM, 2005, 57(5), 57.
62 Yoo M H. Metallurgical Transactions A, 1981, 12(3), 409.
63 Zhu S Q, Yan H G, Chen J H, et al. Scripta Materialia, 2010, 63(10), 985.
64 Xin Y C, Wang M Y, Zeng Z, et al. Scripta Materialia, 2011, 64(10), 986.
65 Huang Z Q, Huang Q X, Ma L F, et al. Rare Metal Materials and Engineering, 2014, 43(5), 1199(in Chinese).
黄志权, 黄庆学, 马立峰, 等. 稀有金属材料与工程, 2014, 43(5), 1199.
66 Sakai T, Watanabe Y, Utsunomiya H. Materials Science Forum, 2009, 618-619, 483.
67 Saito Y, Utsunomiya H, Tsuji N, et al. Acta Materialia, 1999, 47(2), 579.
68 Jia W T, Ma L F, Tang Y, et al. Materials and Design, 2016, 103, 171.
69 靳丽, 吴婷, 董杰, 等. 中国专利, CN102909217A, 2013.
70 Jiang X Q. In: 2018 International Conference on Lamina Metal Composite Materials & The 5th Seminar on China’s Technology and Application of Aluminum Matrix Composites. Shanghai, 2018, pp. 343(in Chinese).
蒋显全. 2018国际层状金属复合材料论坛暨第五届中国铝基复合材料技术与应用研讨会. 上海, 2018, pp. 343.
71 Kim S J, Kim D, Lee Y S, et al. Metals and Materials International, 2015, 21(4), 719.
72 Kuang J, Li X H, Zhang R K, et al. Materials and Design, 2016, 100, 204.
73 Sun J N, Liu D D, Zhang J P, et al. In: 2018 Youth Science and Technology Forum of the Nonferrous Metals Society of China. Changchun, 2018, pp. 186(in Chinese).
孙静娜, 刘冬冬, 张俊鹏, 等. 中国有色金属学会2018青年科技论坛. 长春, 2018, pp. 186.
74 Kim S H, You B S, Yim C D, et al. Materials Letters, 2005, 59(29-30), 3876.
75 Huang X, Suzuki K, Watazu A, et al. Scripta Materialia, 2009, 60(11), 964.
76 Watanabe H, Mukai T, Ishikawa K, et al. Journal of Materials Science, 2004, 39(4), 1477.
77 Qu J H, Zhang Z G, Wang F, et al. Chinese Journal of Materials Research, 2007, 21(4), 354(in Chinese).
曲家惠,张正贵,王福,等. 材料研究学报, 2007,21(4), 354.
78 Wei J C, Huang Q X, Huang Z Q, et al. Rare Metal Materials and Engineering, 2018, 47(2), 652(in Chinese).
韦建春, 黄庆学, 黄志权, 等. 稀有金属材料与工程, 2018, 47(2), 652.
79 Ding Y P, Le Q C, Zhang Z Q, et al. Journal of Materials Processing Technology, 2013, 213(12), 2101.
80 Jia W T, Ning F K, Ding Y P, et al. Materials Science and Engineering A, 2018, 720, 11.
81 Sun T, Wang G Q, Wu Y, et al. Journal of Northeastern University (Natural Science), 2012, 33(4), 528(in Chinese).
孙涛, 王贵桥, 吴岩, 等. 东北大学学报(自然科学版), 2012, 33(4), 528.
82 Jiao Z J, Sun T, Li J P. Journal of Northeastern University (Natural Scie-nce), 2017, 38(2), 229(in Chinese).
矫志杰, 孙涛, 李建平. 东北大学学报(自然科学版), 2017, 38(2), 229.
83 Wang H Y, Yu Z P, Zhang L, et al. Scientific Reports, 2015, 5(1), 17100.
84 Al-Samman T, Gottstein G. Scripta Materialia, 2008, 59(7), 760.
85 Tan X F, Mao D H, Cai A H, et al. Journal of Mechanical Engineering, 2012, 48(16), 30(in Chinese).
谭湘夫, 毛大恒, 蔡安辉, 等. 机械工程学报, 2012, 48(16), 30.
86 Xu H J, Ma L F, Liu C L, et al. Journal of Mechanical Engineering, 2017, 53(10), 43(in Chinese).
徐海洁, 马立峰, 刘崇林, 等. 机械工程学报, 2017, 53(10), 43.
87 Zhang H, Huang G S, Roven H J, et al. Materials and Design, 2013, 50, 667.
88 Wang L, Kim Y M, Lee J, et al. Materials Science and Engineering A, 2011, 528 (3), 943.
89 Chen L J, Jing Q L, Li H. Applied Mechanics and Materials, 2015, 723, 5.
90 Zarandi F, Seale G, Verma R, et al. Materials Science and Engineering A, 2008, 496(1-2), 159.
91 Chen R S, Jiang M G, Luo J, et al. In: Magnesium Technology 2017. San Diego, 2017, pp. 441.
92 Wu D, Chen R S, Han E H. Journal of Alloys and Compounds, 2011, 509(6), 2856.
93 Hantzsche K, Bohlen J, Wendt J, et al. Scripta Materialia, 2010, 63(7), 725.
94 Ball E A, Prangnell P B. Scripta Metallurgica et Materialia, 1994, 31(2), 111.
95 Wang X J, Xu D K, Wu R Z, et al. Journal of Materials Science & Technology, 2018, 34(2), 245.
96 Xie Z W, Zhu Z Z, Zhang D F, et al. Journal of Central South University (Science and Technology), 2012, 43(12), 1(in Chinese).
谢泽伟, 朱子宗, 张丁非, 等. 中南大学学报(自然科学版),2012, 43(12), 1.
97 Chen X H, Pan F S, Mao J J, et al. Journal of Materials Science, 2012, 47(1), 514.
98 Kamran J, Hasan B A, Tariq N H, et al. IOP Conference Series: Mate-rials Science and Engineering, 2014, 60, 012024.
99 Hosokawa H, Chino Y, Shimojima K, et al. Materials Transactions, 2003, 44 (4), 484.
100 Huang Z Q, Huang Q X, Wei J C, et al. Rare Metal Materials and Engineering, 2016, 45(6), 1461(in Chinese).
黄志权, 黄庆学, 韦建春, 等. 稀有金属材料与工程, 2016, 45(6), 1461.
[1] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[2] 余东海, 熊开琴, 黄楠. 等离子体聚合聚环氧乙烷类涂层用于提高镁合金心血管支架抗腐蚀性能[J]. 材料导报, 2020, 34(6): 6166-6171.
[3] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[4] 雷意, 严红革, 陈吉华, 夏伟军, 苏斌, 丁天, 黄文森. 温度对ZK60镁合金细晶板材成形性能的影响[J]. 材料导报, 2020, 34(2): 2067-2071.
[5] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[6] 倪嘉, 柴皓, 史昆, 赵军, 刘时兵, 刘鸿羽, 崔亚迪. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(Z2): 369-373.
[7] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[8] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[9] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[10] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[13] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[14] 祝佳林, 邓超, 柳亚辉, 刘施峰, 张玉. 钽板退火过程中的储存能演变与再结晶行为[J]. 材料导报, 2019, 33(4): 654-659.
[15] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed