Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4077-4082    https://doi.org/10.11896/cldb.18110198
  金属与金属基复合材料 |
真空和渗氮烧结WC-TiC-Co硬质合金的梯度结构形成机理研究
陈健1,2, 周莉1, 刘金洋2, 吉红伟2, 杨勇1, 刘伟2, 邓欣2, 伍尚华2
1 广东技术师范大学机电学院,广州 510635;
2 广东工业大学机电工程学院,广州 510006
Research on Formation Mechanisms of Gradient Structures for WC-TiC-Co Carbides Under Vacuum and Nitriding Sintering
CHEN Jian1,2, ZHOU Li1, LIU Jinyang2, JI Hongwei2, YANG Yong1, LIU Wei2, DENG Xin2, WU Shanghua2
1 School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510635, China;
2 School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 9643KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验对真空和渗氮烧结的WC-20TiC-0.5VC-0.5Cr2C3-12Co硬质合金的微观结构进行了研究。研究表明烧结气氛对WC-TiC-Co硬质合金的梯度结构具有关键性影响:真空烧结能使硬质合金形成厚度不低于20 μm的无立方相表层,该表层主要由WC与Co相组成,无明显TiC相特征;而渗氮烧结促使硬质合金形成以Ti(C,N)与TiC为主要物相的富立方相表层。与此同时,研究发现氮气压强对富立方相表层的形成具有显著促进作用,随着氮气压强的提高,富立方相表层厚度明显增加。真空和渗氮烧结的硬质合金芯部微观组织均由WC相、(W,Ti)C相、TiC相与Co相组成。相对于渗氮烧结,真空烧结会导致硬质合金芯部WC的晶粒度增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈健
周莉
刘金洋
吉红伟
杨勇
刘伟
邓欣
伍尚华
关键词:  硬质合金  烧结气氛  梯度结构  微观组织    
Abstract: This paper has systematically investigated the gradient microstructures in WC-20TiC-0.5VC-0.5Cr2C3-12Co cemented carbides synthesized in vacuum and nitriding sintering, respectively. The study shows that sintering atmosphere has a critical effect on gradient structure of WC-TiC-Co carbide. The vacuum sintering results in a surface layer free of face center cubic (FCC) phase. The thickness of FCC-free surface layer is more than 20 μm. The nitriding sintering results in the formation of a FCC (Ti(C,N) and TiC) rich surface layer. It shows that N2 pressure has an important effect on the thickness of FCC-rich surface layer. The higher N2 pressure results in the thicker FCC-rich surface layer. The microstructure in the core of the carbides synthesized in either vacuum or nitriding sintering atmosphere shares similar microstructure of WC, (W,Ti)C, TiC and Co phases. Compared with nitriding sintering, vacuum sintering leads to coarser WC grains in the core of the carbide.
Key words:  cemented carbide    sintering atmosphere    gradient structure    microstructure
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TF125.3  
  TG135.5  
基金资助: 广东省重大科技专项计划项目(2016B090914001);广东省科技计划项目(2017B090913006;2016A010102019);广东省普通高校青 年创新人才类项目(2018KQNCX141)
通讯作者:  dengxin@gdut.edu.cn   
作者简介:  陈健,广东技术师范大学,讲师,2018年6月毕业于广东工业大学,获得工学博士学位。于2017年1月至2018年1月在美国University of Utah进行联合培养。主要从事梯度硬质合金制备、硬质合金刀具切削性能以及复合材料增材制造领域的研究;邓欣,广东工业大学机电工程学院特聘教授,国家千人计划特聘专家。邓欣教授在美国阿拉巴马大学伯明翰分校获得博士学位。在加入广东工业大学以前,邓欣教授曾在世界顶级硬质合金制造公司-肯纳金属,世界最大的石油服务公司-斯伦贝谢公司任高级研发工程师。邓欣教授的主要研究领域包括无铅焊料力学性能研究、金属基复合材料及粉末冶金材料力学性能研究、纳米硬质合金的制造及性能、非传统硬质合金刀具研究、硬质合金梯度材料制造及性能研究、硬质合金-金刚石复合材料以及特殊形状金刚石聚晶合成工艺及材料设计研究、金属基复合材料3D打印等。邓欣教授已经主持研发多项国际顶尖的硬质合金及超硬材料工具产品,发表专业论文40余篇,他引次数超过800,申请美国专利8项,授权3项。
引用本文:    
陈健, 周莉, 刘金洋, 吉红伟, 杨勇, 刘伟, 邓欣, 伍尚华. 真空和渗氮烧结WC-TiC-Co硬质合金的梯度结构形成机理研究[J]. 材料导报, 2020, 34(4): 4077-4082.
CHEN Jian, ZHOU Li, LIU Jinyang, JI Hongwei, YANG Yong, LIU Wei, DENG Xin, WU Shanghua. Research on Formation Mechanisms of Gradient Structures for WC-TiC-Co Carbides Under Vacuum and Nitriding Sintering. Materials Reports, 2020, 34(4): 4077-4082.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110198  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4077
1 Upadhyaya G. Materials and Design, 2001,22(6),483.
2 van der Merwe R, Sacks N. International Journal of Refractory Metals and Hard Materials, 2013, 41, 94.
3 Wang Y, Pan Z, Wang C, et al. Journal of Materials Science & Techno-logy, 2012, 28(3), 205.
4 Espinosa L, Bonache V, Salvador M D. Wear, 2011, 272(1), 62.
5 Yang Y, Su Y, Li L, et al. The International Journal of Advanced Manufacturing Technology, 2014,76(9-12),1731.
6 Hei H, Ma J, Li X, et al. Surface and Coatings Technology, 2015, 261,272.
7 Konyashin I, Ries B, Hlawatschek S. Surface and Coatings Technology, 2014, 258,300.
8 Liu Y, Li X, Zhou J, et al. International Journal of Refractory Metals and Hard Materials, 2015, 50,53.
9 Shi L, Yang J, Huang J, et al. International Journal of Refractory Metals & Hard Materials, 2017, 66,198.
10 Suzuki H, Hayashi K, Taniguchi Y. Transactions of the Japan Institute of Metals, 2007, 22(11),758.
11 Gustafson P, Ostlund A. International Journal of Refractory Metals & Hard Materials, 1993, 12(3),129.
12 Garcia J, Pitonak R. International Journal of Refractory Metals and Hard Materials, 2013, 36, 52.
13 Sun L, Yang Te, Jia C, et al. International Journal of Refractory Metals and Hard Materials, 2011, 29(2),147.
14 Chen L, Lengauer W, Dreyer K. International Journal of Refractory Metals and Hard Materials, 2000, 18(2-3),153.
15 Ucakar V, Dreyer K, Lengauer W. International Journal of Refractory Metals and Hard Materials, 2002, 20(3), 195.
16 Fan H J, Liu Y, Ye J W, et al. Rare Metals, DOI:10.1007/s12598-016-0737-0.
17 Yang T, Xiong J. Journal of Materials Research, 2016, 31(23),3795.
18 Zhang W, Du Y, Zhou P, et al. Scripta Materialia, 2016, 123,73.
19 Kowanda C, Speidel M O. Scripta Materialia, 2003, 48(8),1073.
20 Tang S, Liu D, Li P, et al. International Journal of Refractory Metals and Hard Materials, 2016, 58,137.
21 Chen J, Deng X, Gong M, et al. Applied Surface Science, 2016, 380,108.
[1] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[2] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[3] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[4] 周勇, 赵飞, 高倩, 孙良, 董会, 翟文彦. Sn含量对Al-Zn合金组织与溶解性能的影响[J]. 材料导报, 2019, 33(Z2): 406-409.
[5] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[6] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[7] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[8] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[9] 庄伟彬, 田宗伟, 刘广柱, 孙跃军. 原位自生TiCp/6061复合材料的组织、硬度及耐磨性能[J]. 材料导报, 2019, 33(22): 3762-3767.
[10] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[11] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[12] 张永皞, 孟玉堂, 范啟超, 孙明艳, 黄姝珂. “近单相”型NiTiNb形状记忆合金研究进展[J]. 材料导报, 2019, 33(19): 3272-3276.
[13] 贾森森, 王永彪, 肖艳秋, 吴玉娟, 彭立明, 刘建秀, 刘新田. 镁合金微观组织的相场法模拟进展[J]. 材料导报, 2019, 33(19): 3306-3312.
[14] 方继恒, 刘曦, 谢明, 胡洁琼, 王松, 张吉明, 杨有才, 陈永泰, 王塞北, 李再久. 过热度、传热系数以及高斯分布参数对Ag-28Cu-2Ni合金凝固组织的影响[J]. 材料导报, 2019, 33(18): 3077-3084.
[15] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed