Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3272-3276    https://doi.org/10.11896/cldb.18090045
  金属与金属基复合材料 |
“近单相”型NiTiNb形状记忆合金研究进展
张永皞, 孟玉堂, 范啟超, 孙明艳, 黄姝珂
中国工程物理研究院机械制造工艺研究所,绵阳 621999
Development of “Near Single-phase” NiTiNb Shape Memory Alloy
ZHANG Yonghao, MENG Yutang, FAN Qichao, SUN Mingyan, HUANG Shuke
Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621999
下载:  全 文 ( PDF ) ( 1601KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 NiTiNb形状记忆合金由于其独特的相变宽滞后特性而具有极大的工程便利性,但传统成分的Ni47Ti44Nb9合金由于含有大量的稀贵金属Nb而在一定程度上限制了其大规模的商业化推广。“近单相”型NiTiNb合金则属于一类低Nb含量的NiTi基形状记忆合金,其Nb含量相较于Ni47Ti44Nb9合金降低了1/2以上。该类合金不仅同样具备较优的形状记忆性能,同时也具备较宽的相变滞后,这些特征为其应用于实际工程提供了可能。
“近单相”型NiTiNb合金虽然较早就已经出现,但近年来才逐渐受到人们的关注。在该合金中,由于大部分Nb元素主要以固溶态形式存在,使其既具有NiTi二元合金的优点,同时也具备NiTiNb宽滞后合金的部分特征。目前,人们对“近单相”合金的研究较多集中于微观组织、相变行为、力学性能以及形状记忆性能等多个方面。通过研究,人们已经基本掌握了“近单相”合金的特性和主要优势,而该合金低Nb含量的特性也为深入探讨Nb元素对合金相变行为和形状回复性能的影响机理提供了便利。
基于现有研究,“近单相”合金中部分Nb元素可能以β-Nb相的形式存在,其数量不仅与Nb的绝对含量有关,也与合金中的Ni和Ti的原子比有关。由于β-Nb相的塑性变形不可回复,“近单相”合金优良的形状记忆性能主要归功于其较低的β-Nb相含量。虽然有学者证实了“近单相”合金在相变滞后方面的突出表现,并由此指出固溶Nb元素对相变滞后所起的关键作用,但研究亦表明低Nb合金的相变滞后尚不能完全达到Ni47Ti44Nb9合金的水平。此外,Nb含量的降低也可能对“近单相”合金的力学性能产生不利影响。因此,具备工程应用价值的“近单相”合金的Nb含量并不宜过低。
本文整理了近年来人们在“近单相”型NiTiNb合金领域的研究成果,总结了该类合金在微观组织、相变行为、力学性能以及形状记忆效应等方面的特点,分析了其相较于传统高Nb合金的优势以及目前主要存在的不足,并对此类合金今后的改进和优化方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张永皞
孟玉堂
范啟超
孙明艳
黄姝珂
关键词:  “近单相”NiTiNb合金  马氏体相变  微观组织  力学性能    
Abstract: NiTiNb shape memory alloy provides remarkable engineering convenience because of its unique phase transformation hysteresis. However, the use of large amount of Nb element in traditional Ni47Ti44Nb9 alloy restricts the broader commercial application of the alloy. “Near single-phase” NiTiNb alloy is a sort of NiTi based shape memory alloy with low Nb content. The content of Nb in “near single-phase” alloy decreases more than a half compared with Ni47Ti44Nb9 alloy. The alloy possesses not only good shape memory property but also relative wide phase transformation hysteresis, which makes it promising in terms of industrial engineering application.
Though “near single-phase” NiTiNb alloy appeared for many years, not until rencent years has it attracted much attention among researchers. Since most Nb atoms are dissolved in the NiTi matrix, the alloy has combined virtues of both NiTi binary alloy and NiTiNb wide hysteresis alloy. To date, most investigations about “near single-phase” alloy are focused on its microstructure, phase transformation behaviors, mechanical properties and shape memory effect. Character and main advantages of the alloy have been obtained through these studies. Moreover, low Nb content of the alloy also gives convenience for people to discuss the effect of Nb element on transformation behavior and shape memory property.
Based on existing studies, part of the Nb atoms may appear as β-Nb phase in “near single-phase” alloy. The amount of β-Nb phase depends on not only the amount of Nb element in the alloy, but also the Ni/Ti ratio. Since the plastic deformation of β-Nb phase is not recoverable, the good shape memory properties of “near single phase” alloys should thus be attributed to the rather low content of β-Nb. Some researchers have proved the excellent shape memory property of “near single-phase” alloy, and they also indicate that Nb atoms which dissolved in NiTi matrix are the predominant factor accounting for the wide hysteresis. Other research, however, also shows that the hysteresis of “near single-phase” alloy can not achieve the same level of Ni47Ti44Nb9 alloy. Furthermore, lower Nb content may also weaken the mechanical properties of the alloy. Consequently, the content of Nb for “near single-phase” alloy can not be too low to meet the requirement of engineering applications.
In this paper we reviewed the current progress in research on “near single-phase” NiTiNb alloy. Microstructure, phase transformation behavior, mechanical properties and shape memory effect of the alloy are also summarized. Advantages and disadvantages of the alloy compared with traditional high Nb-containing NiTiNb alloys are analyzed. Thus this paper may shed some light on the future development and optimization of the “near single-phase” NiTiNb alloy.
Key words:  “near single-phase” NiTiNb alloy    martensitic transformation    microstructure    mechanical property
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TG146.2  
基金资助: 中国工程物理研究院科学技术发展基金(2015B0302060);四川省应用基础研究计划(2017JY0319)
作者简介:  张永皞,中国工程物理研究院机械制造工艺研究所高级工程师。2004年6月本科毕业于重庆大学材料科学与工程学院,并于2012年6月于重庆大学材料科学与工程学院材料学专业取得博士学位。主要研究领域为功能材料的制备以及金属材料热处理。近年来,在相关领域发表论文20余篇。kevear@foxmail.com
引用本文:    
张永皞, 孟玉堂, 范啟超, 孙明艳, 黄姝珂. “近单相”型NiTiNb形状记忆合金研究进展[J]. 材料导报, 2019, 33(19): 3272-3276.
ZHANG Yonghao, MENG Yutang, FAN Qichao, SUN Mingyan, HUANG Shuke. Development of “Near Single-phase” NiTiNb Shape Memory Alloy. Materials Reports, 2019, 33(19): 3272-3276.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090045  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3272
1 Buehler W J, Gilfrich J V, Wiley R C. Journal of Applied Physics,1963,34,1475.2 Simpson J A, Melton K, Duerig T. US Patent,4631094,1986.3 Hamilton R F, Lanba A, Ozbulut O E, et al. Shape Memory and Superelasticity,2015,1(2),117.4 He X M, Rong L J. Scripta Materialia,2004,51,7.5 Miyazaki S, Kohl M. In: Smart Structures and Materials 1998: Smart Materials Technologies. Bellingham, United States,1998,pp.2.6 Yan Y, Jin W, Li X W. Metallurgical and Materials Transactions A,2013,44A,978.7 Yin X, Mi X, Li Y, et al. Journal of Materials Engineering and Perfor-mance,2012,21(12),2684.8 Liu H, Sun G, Wang Y, et al. Materials Science and Technology,2013,29(12),1499.9 Yan Y, Jin W. Chinese Journal of Rare Metals,2008,32(4),404(in Chinese).颜莹,金伟.稀有金属,2008,32(4),404.10 Zhang C, Cai W, Zhao L. Acta Metallurgica Sinica (English Edition),1991,4(6),436.11 Zhang C S, Wang Y Q, Chai W, et al. Materials Chemistry and Physics,1991,28,43.12 Wang L, Yan D S, Jiang Z M, et al. Journal of Materials Engineering,2004(7),60(in Chinese).王磊,闫德胜,姜志民,等.材料工程,2004(7),60.13 Yang G L, Wang X Z, Wang E M, et al. Materials Review,2009,23(S2),322(in Chinese).杨根林,王晓震,王二敏,等.材料导报,2009,23(专辑14),322.14 Shu X Y, Lu S Q, Li G F, et al. Journal of Alloys and Compounds,2014,609,156.15 Zhao L C, Duerig T W, Justi S, et al. Scripta Metallurgica et Materialia,1990,24(2),221.16 Yang Y Z. The structure evolution, phase transformation and shape memory behavior of shape memory alloy with low Nb content. Master’s Thesis, Harbin Engineering University, China,2005(in Chinese).杨亚卓.低Nb形状记忆合金组织、相变及记忆行为研究.硕士学位论文,哈尔滨工程大学,2005.17 Zhang C S, Zhao L C, Duerig T W, et al. Scripta Metallurgica et Mate-rialia,1990,24(9),1807.18 Piao M, Miyazaki S, Otsuka K. Materials Transactions JIM,1992,33(4),346.19 Zhao X, Yan X, Yang Y, et al. Materials Science & Engineering A,2006,438-440,575.20 Piao M, Miyazaki S, Otsuka K, et al. Materials Transactions JIM,1992,33(4),337.21 Shi H, Pourbabak S, Humbeeck J V, et al. Scripta Materialia,2012,67,939.22 Uchida K, Shigenaka N, Sakuma T, et al. Materials Transactions,2007,48(3),445.23 Wang M, Jiang M, Liao G, et al. Progress in Natural Science: Materials International,2012,22(2),130.24 Xiao F, Ma G, Zhao X, et al. Chinese Journal of Aeronautics,2009,22,658.25 He X M, Rong L J, Yan D S, et al. Materials Science and Engineering A,2004,371,193.26 Cai W, Meng X L, Zhao L C. Current Opinion in Solid State & Materials Science,2005,9(6),296.27 Yang G J, Deng J. Rare Metal Materials and Engineering,1998,27(6),322(in Chinese).杨冠军,邓炬.稀有金属材料与工程,1998,27(6),322.28 Yang Y Z, Zhao X Q, Meng L J, et al. Acta Metallrugica Sinica,2005,41(6),627(in Chinese).杨亚卓,赵新青,孟令杰,等.金属学报,2005,41(6),627.29 He X M. Effect of Nb content on properties of Ni-Ti-Nb wide hysteresis shape memory alloys and its action mechanism. Ph.D. Thesis, Institute of Metal Research, Academia Sinica, China,2004(in Chinese).何向明.Nb含量对Ni-Ti-Nb宽滞后形状记忆合金性能的影响及其作用机制.博士学位论文,中国科学院金属研究所,2004.30 Xu Dong Sheng, Song Yan, Li Dong, et al. Philosophical Magazine A,1997,75(4),1185.31 Liu W, Zhao X. Chinese Journal of Aeronautics,2009,22,540.32 Otsuka K, Wayman C M. Shape memory materials, Cambridge University Press, Cambridge, UK,1998.33 Kockar B, Karaman I, Kim J I, et al. Acta Materialia,2008,56,3630.34 Zhang X, Song J, Huang C, et al. Journal of Alloys and Compounds,2011,509,300635 Tong Y X, Jiang P C, Chen F, et al. Intermetallics,2014,49,81.36 Chen Y, Jiang H, Rong L, et al. Intermetallics,2011,19,217.37 Xiao F, Zhao X Q, Xu H B, et al. Acta Metallurgica Sinica,2009,45(1),18(in Chinese).肖甫,赵新青,徐惠彬,等.金属学报,2009,45(1),18.38 Sui J H, Liu A L, Li Y F, et al. Rare Metal Materials and Engineering,2009,38(10),1752(in Chinese).隋解和,刘爱莲,黎云飞,等.稀有金属材料与工程,2009,38(10),1752.39 Sui J H, Gao Z Y, Li Y F, et al. Materials Science & Engineering A,2009,508,33.40 Wang Y, Zheng Y F, Tong Y X, et al. Intermetallics,2015,64,32.41 Shahmir H, Nili-Ahmadabadi M, Wang C T, et al. Materials Science & Engineering A,2015,629,16.42 Tong Y X, Guo B, Chen F, et al. Scripta Materialia,2012,67(1),1.43 Pushin V G, Stolyarov V V, Valiev R Z, et al. Materials Science & Engineering A,2005,410-411,386.44 Zhang X, Song J, Huang C, et al. Journal of Alloys and Compounds,2011,509,3006.45 Shahmir H, Nili-Ahmadabadi M, Mansouri-Arani M, et al. Materials Science & Engineering A,2013,576,178.46 Jiang P C, Zheng Y F, Tong Y X, et al. Intermetallics,2014,54,133.47 Liu J, Ouyang Z, Lu S, et al. Metal Science and Heat Treatment,2017,59,50.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[5] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[6] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[7] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[8] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[11] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed