Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3277-3289    https://doi.org/10.11896/cldb.18080093
  金属与金属基复合材料 |
纯钼金属高温塑性变形行为研究进展
夏雨1,2, 王快社1,2, 胡平1,2, 胡卜亮1,2, 李世磊1,2, 陈文静1,2, 周宇航1,2, 冯鹏发3
1 西安建筑科技大学冶金工程学院,西安 710055;
2 西安建筑科技大学功能材料加工国家地方联合工程研究中心, 西安 710055;
3 金堆城钼业股份有限公司, 西安 710077
Research Progress on Plastic Deformation Behavior of Pure Molybdenum Metal
XIA Yu1,2, WANG Kuaishe1,2, HU Ping1,2, HU Boliang1,2, LI Shilei1,2, CHEN Wenjing1,2, ZHOU Yuhang1,2,FENG Pengfa3
1 School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055;
2 State Local Joint Engineering Research Center for Functional Materials Processing, Xi’an University of Architecture and Technology, Xi’an 710055;
3 Jinduicheng Molybdenum Co., Ltd., Xi’an 710077
下载:  全 文 ( PDF ) ( 4576KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 稀有金属钼属战略性基础材料,具有熔点高、高温强度大、膨胀系数小、高温蠕变速率低和导电/导热性能好等优点,被广泛应用于航空航天、核工业、半导体照明、医疗、机械加工等重要工业领域,纯钼金属板材作为附加值高的深加工终端产品和冲压结构件原材料,更是被大量应用于高新技术领域。然而,由于钼本身具有变形温度高、低温塑性差、高温下氧化严重等一系列加工缺点,导致钼板轧制加工过程困难,经常出现各种缺陷和问题,如头部张嘴开裂、分层和边裂等,严重限制了其应用范围。因此,研究高纯钼金属塑性变形中的变形行为,并根据真应力-应变关系建立纯钼板材高温塑性变形的本构方程,探究工艺参数、变形行为及微观组织演变的相互关系可以为高性能、高纯钼粉末烧结材料的加工制备和应用提供理论和实践依据,进而提高我国粉末冶金钼产品在国际中的竞争力以及影响力。
近年来,国内外学者一直借助热模拟试验机对纯钼高温变形行为和真应力-应变本构方程进行研究,通过在不同温度、应变速率下进行的热模拟压缩及拉伸实验得到的真应力-应变曲线及微观结构图,阐述了纯钼高温塑性变形在不同情况下的变形机制:在较低温度、高应变速率作用下,加工硬化起主要作用;在高温、低应变速率时,会发生流变软化现象,进而得到纯钼热加工最佳的温度范围及应变速率。另外,研究者根据热模拟实验所得到的真应力-应变的变化规律,采用包含考虑Zener-Hollomon参数的双曲正弦模型Arrhenius方程,建立了纯钼板高温塑性流变应力与变形温度和应变速率之间的本构方程。依据此本构方程计算出的纯钼板坯流变应力理论值与实际值的平均相对误差较小,表明所建立的本构方程对纯钼热成形加工工艺的制定具有一定的理论指导意义。
本文综述了近年来国内外高纯钼金属塑性变形行为及其本构方程的研究进展,分别对粉末冶金纯钼高温热模拟压缩及拉伸的研究进展进行了介绍,分析了温度、应变速率、应变程度对纯钼高温塑性变形行为的影响,建立了纯钼高温热变形过程中的本构方程,并对今后研究方向进行了建设性的展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏雨
王快社
胡平
胡卜亮
李世磊
陈文静
周宇航
冯鹏发
关键词:  纯钼  塑性形变  变形行为  本构方程    
Abstract: Rare metal molybdenum is a strategic basic material with high melting point, high temperature strength, small expansion coefficient, low temperature creep rate and good electrical and thermal conductivity. It is widely used in aerospace, nuclear industry, semiconductor lighting, medical, mechanical processing. In important industrial fields, pure molybdenum metal sheets are used as high-value deep processing end pro-ducts and raw materials for stamping structural parts, and are widely used in high-tech fields. However, since molybdenum itself has a series of processing disadvantages such as high deformation temperature, poor low temperature plasticity, and severe oxidation at high temperature, the process of rolling a molybdenum sheet is difficult, and various defects and problems often occur, such as cracking of the mouth of the head. Layering and edge cracking, etc., severely limit the scope of its application. Therefore, the deformation behavior of high-purity molybdenum metal plastic deformation is studied, and the constitutive equation of high-temperature plastic deformation of pure molybdenum plate is established according to the true stress-strain relationship. The relationship between process parameters, deformation behavior and microstructure evolution can be studied as high performance. The processing and preparation of high-purity molybdenum powder sintered materials provide theoretical and practical basis, thereby enhancing the competitiveness and influence of China’s powder metallurgy molybdenum products in the international arena.
In recent years, domestic and foreign scholars have been studying the high temperature deformation behavior and true stress-strain constitutive equation of pure molybdenum by means of thermal simulation test machine. The true stress obtained by thermal simulation compression and tensile test under different temperature and strain rate-strain curve and microstructure diagram, showing the deformation mechanism of high-temperature plastic deformation of pure molybdenum under different conditions: at lower temperature and high strain rate, work hardening plays a major role; at high temperature and low strain rate, the rheological softening phenomenon occurs,the optimum temperature range and strain rate of pure molybdenum thermal processing are obtained. In addition, the true stress obtained by the researchers based on the thermal simulation experiment. The variation law of strain is based on the Arrhenius equation containing the hyperbolic sinusoidal model considering the Zener deformation Z parameter. The constitutive equation between the high temperature plastic flow stress and the deformation temperature and strain rate of pure molybdenum plate is established. According to the constitutive equation, the average relative error between the theoretical and actual values of the flow stress of pure molybdenum slab is small, which indicates that the established constitutive equation can be a theoretical reference for the formulation of pure molybdenum hot forming process.
In this paper, the research progress of plastic deformation behavior and constitutive equation of high-purity molybdenum metal at home and abroad in recent years is reviewed. The research progress of high-temperature thermal compression and stretching of powder metallurgy pure molybdenum is introduced. The temperature and strain rate are analyzed. The influence of three degrees of strain on the high temperature plastic deformation behavior of pure molybdenum is established. The constitutive equation of pure molybdenum during high temperature thermal deformation is established, and the future research direction is made constructively.
Key words:  pure molybdenum    plastic deformation    deformation behavior    constitutive equation
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TG146  
基金资助: 国家重点研发计划重点专项(2017YFB0305600;2017YFB0306000);中国博士后科学基金(2016M600770);陕西省博士后基金(2017)
作者简介:  夏雨,2016年6月毕业于西安建筑科技大学,获得工学学士学位。现为西安建筑科技大学研究生,在王快社教授和胡平教授的指导下进行研究。目前主要研究领域为粉末冶金纯钼的高温塑性变形行为。王快社,西安建筑科技大学冶金工程学院院长,博士生导师。中国有色金属学会常务理事,中国金属学会理事,中国金属学会青年工作委员会委员,中国金属学会塑性加工理论与新技术学术委员会委员,中国有色金属学会合金加工学术委员会委员,中国有色金属学会材料科学与工程学会委员委员会委员,陕西省金属学会常务理事,陕西省有色金属学会副理事长。主要从事材料加工工程方向的本科生和研究生专业课教学工作,从事超细晶材料开发、粉末冶金难熔金属及其合金加工、先进连接技术等方向的科研工作。主持国家自然基金、陕西省科技统筹创新计划、陕西省重大科技专项等项目10项,发表学术论文80余篇,授权发明专利16项,出版专著2部,获省部级科技奖励3项。胡平,博士,西安建筑科技大学冶金工程学院材料加工系教授、博士生导师。先后入选陕西省高校科协青年人才托举计划、陕西省青年科技新星、陕西省普通高校首批“青年杰出人才”培育计划、陕西省高层次人才特殊支持计划青年拔尖人才、西安建筑科技大学首批“优秀青年学者”雁塔学者。研究方向为高性能粉末冶金钼合金及纳米功能材料,主持国家重点研发计划项目子课题、国家自然科学基金、中国博士后科学基金一等资助等各类科研项目15项,在Nano Research、J. Alloy Comp.、Mater. Sci. Eng. A、Materials Letters等国内外学术期刊发表论文50余篇;授权中国发明专利38项,授权实用新型专利2项;获中国有色金属工业科学技术一等奖2项。huping1985@126.com
引用本文:    
夏雨, 王快社, 胡平, 胡卜亮, 李世磊, 陈文静, 周宇航, 冯鹏发. 纯钼金属高温塑性变形行为研究进展[J]. 材料导报, 2019, 33(19): 3277-3289.
XIA Yu, WANG Kuaishe, HU Ping, HU Boliang, LI Shilei, CHEN Wenjing, ZHOU Yuhang,FENG Pengfa. Research Progress on Plastic Deformation Behavior of Pure Molybdenum Metal. Materials Reports, 2019, 33(19): 3277-3289.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080093  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3277
1 Xu B. Study on microstructure and properties of high performance sintered molybdenum materials for extrusion dies. Master’s Thesis, Central South University, China,2010(in Chinese).徐兵,挤压模具用高性能烧结钼材料组织与性能的研究.硕士学位论文,中南大学,2010.2 Xiao M L, Li F G, Xie H F, et al. Materials & Design,2012,34,112.3 Ju Y P. Study on thermal deformation behavior of pure molybdenum slab. Master’s Thesis, Henan University of Science and Technology, China,2015(in Chinese).居炎鹏.纯钼板坯热变形行为研究.硕士学位论文,河南科技大学,2015.4 Yang F R. Metal World,2011(5),26(in Chinese).杨芙蓉.金属世界,2011(5),26.5 Xu J Y, Yang X M, Liu M, et al. China Molybdenum Industry,2014,38(3),5(in Chinese).许洁瑜,杨晓明,刘萌,等.中国钼业,2014,38(3),5.6 Deng Z N, Liu J Y. China Molybdenum Industry,2013,37(3),36(in Chinese).邓自南,刘竞艳.中国钼业,2013,37(3),36.7 Zhao W P, Zhao S G, Wang J. Patent, CN102392222A,2012(in Chinese).赵文普,赵士刚,王健.中国专利,CN102392222A,2012.8 Babinsky K, Weidow J, Knabl W, et al. Materials Characterization,2014,87(1),95.9 Xu J Y, Cheng J F. Materials China,2008,27(9),20(in Chinese).许洁瑜,程景峰.中国材料进展,2008,27(9),20.10 Li D C, Yang L X, Sun Y J, et al. China Molybdenum Industry,2008,32(1),8(in Chinese).李大成,杨刘晓,孙院军,等.中国钼业,2008,32(1),8.11 Lin Y C, Chen M S, Zhang J. Materials Science & Engineering A,2009,499(1-2),88.12 Primig S, Leitner H, Clemens H, et al. International Journal of Refractory Metals & Hard Materials,2010,155(1),20.13 Primig S, Leitner H, Knabl W, et al. Materials Science & Engineering A,2012,535(2),316.14 Primig S, Clemens H, Knabl W, et al. International Journal of Refractory Metals & Hard Materials,2015,48(3),179.15 Cui C, Gao Y, Wei S, et al. Journal of Alloys & Compounds,2017,716(8),321.16 Glover G, Sellars C M. Metallurgical Transactions,2008,490(1-2),411.17 Hollang L, Brunner D, Seeger A. Materials Science & Engineering A,2001,s319-321(2001),233.18 Murty S V S N, Rao B N, Kashyap B P. Journal of Materials Science,2002,37(6),1197.19 Behera A N, Kapoor R, Sarkar A, et al. Materials Science & Technology,2014,30(6),637.20 Chaudhuri A, Behera A N, Kapoor R, et al. In: IOP Conference Series Materials Science and Engineering. Beijing,2015,pp.12088.21 Chaudhuri A, Sarkar A, Kapoor R, et al. JOM,2014,66(9),1923.22 Marchattiwar A, Sarkar A, Chakravartty J K, et al. Journal of Materials Engineering & Performance,2013,22(8),2168.23 Sarkar A, Chakravartty J K, Paul B, et al. Physica Status Solidi,2011,208(4),814.24 Sarkar A, Kapoor R, Verma A, et al. Journal of Nuclear Materials,2012,422(1-3),1.25 Shi J, Chen W X, Cheng J C, et al. China Foundry,2013,62(8),736(in Chinese).时坚,陈五星,成京昌,等.铸造,2013,62(8),736.26 Zhao X D. Dynamic recrystallization behavior of 304 stainless steel under hot deformation. Master’s Thesis, Taiyuan University of Science and Technology,2009(in Chinese).赵晓东.304不锈钢热变形条件下动态再结晶行为研究.硕士学位论文,太原科技大学,2009.27 Chaudhuri A, Sarkar A, Suwas S. International Journal of Refractory Me-tals & Hard Materials,2018,73,168.28 Cheng J, Nemat-Nasser S, Guo W. Mechanics of Materials,2001,33(11),603.29 Cheng J, Nemat-Nasser S. Acta Materialia,2000,48(12),3131.30 Li H B, Xu S Q, Tian Y. China Metal Forming Equipment & Manufactu-ring Technology,2010,45(4),62(in Chinese).李宏柏,许树勤,田野.锻压装备与制造技术,2010,45(4),62.31 Wang A Q, Guo H D, Ju Y P, et al. Science of Advanced Materials,2017,9(9),1493.32 Chen C, Yin H, Humail I S, et al. International Journal of Refractory Metals & Hard Materials,2007,25(5-6),411. 33 Primig S, Leitner H, Knabl W, et al. Materials Science & Engineering A,2012,535(2),316.34 Feng D, Zhang X M, Liu S D, et al. Materials Science & Engineering A,2014,608(25),63.35 Nie X A, Hu Z, Liu H Q, et al. Materials Science & Engineering A,2014,613(9),306.36 Jones N G, Dashwood R J, Dye D, et al. Materials Science & Engineering A,2008,490(1),369.37 Kleiser G J, Revil-Baudard B, Cazacu O, et al. International Journal of Solids & Structures,2015,s75-76,287.38 Kleiser G, Revil-Baudard B, Pasiliao C L. International Journal of Impact Engineering,2016,96,116.39 Kim J Y, Jang D, Greer J R. International Journal of Plasticity,2012,28(1),46.40 Wang Z Q, Beyerlein I J. International Journal of Plasticity,2011,27(10),1471.41 Healy C J, Ackland G J. Acta Materialia,2014,70(5),105.42 Kleiser G, Revilbaudard B, Cazacu O, et al. Journal of Physics Confe-rence Series,2016,734(3),032110.43 Scapin M, Peroni L, Carra F. Journal of Dynamic Behavior of Materials,2016,2(4),460.44 Aono Y, Kuramoto E, Kitajima K. In: Proceedings of the 6th Internatio-nal Conference, Melbourne,1982,pp.9.45 Yang L H, Tang M, Moriarty J A. Dislocations in Solids,2010,16(16),1.46 Meng B, Wan M, Wu X, et al. International Journal of Refractory Metals & Hard Materials,2014,45,41.47 Fang F, Zhou Y Y, Yang W. International Journal of Refractory Metals & Hard Materials,2013,41(4),35.48 Scapin M, Peroni L, Carra F. Journal of Dynamic Behavior of Materials,2016,2(4),460.49 Li Q B, Ye F, Zhou H T, et al. The Chinese Journal of Nonferrous Me-tals,2008,18(6),1012(in Chinese).李庆波,叶凡,周海涛,等.中国有色金属学报,2008,18(6),1012.50 Li H Z, Zeng M, Liang X P, et al. Transactions of Materials & Heat Treatment,2012,33(4),110.51 Hollang L, Brunner D, Seeger A. Materials Science & Engineering A,2001,s319-321,233.52 Wang S L, Ruan X L, Yu X L, et al. Journal of Shanghai Jiaotong University,1996(8),20(in Chinese).王少林,阮雪榆,俞新陆,等.上海交通大学学报,1996(8),20.53 Goldstein R, Alexandrov S, Vilotic M. Constitutive equations for severe plastic deformation processes, Springer International Publishing, Germany,2017.54 Wang H Y, Zhao W, Dong J X, et al. Forging & Stamping Technology,2013,38(5),13.55 Zhang X G, Pan Q L, Liang W J, et al. Forging & Stamping Technology,2009,34(1),139.56 Du B, Li D F, Guo S L, et al. Chinese Journal of Rare Metals,2013,37(2),215(in Chinese).杜彬,李德富,郭胜利,等.稀有金属,2013,37(2),215.57 Sellars C M, Mctegart W J. Acta Metallurgica,1966,14(9),1136.58 Laasraoui A, Jonas J J. Metallurgical Transactions A,1991,22(7),1545.59 Sun X Y. Study on plastic deformation law and hot rolling process of pure Mo at high temperature. Master’s Thesis, Northeastern University,2013(in Chinese).孙晓云.纯Mo高温塑性变形规律和热轧工艺研究.硕士学位论文,东北大学,2013.60 Zener C, Hollomon J H. Journal of Applied Physics,1944,15(1),22.61 Seok M, Choi I, Zhao Y, et al. Steel Research International,2015,86(7),817.62 Mcqueen H J, Yue S, Ryan N D, et al. Journal of Materials Processing Technology,1995,53(1-2),293.63 Starink M J. Thermochimica Acta,2003,404(1),163.64 Shi C, Mao W, Chen X G. Materials Science & Engineering A,2013,571(9),83.65 Zhang J, Di H, Wang H, et al. Journal of Materials Science,2012,47(9),4000.66 Zhang M, Li F, Wang S, et al. Materials Science & Engineering A,2010,527(24-25),6771.67 Mokdad F, Chen D L, Liu Z Y, et al. Materials Science & Engineering A,2017,695,322.68 Solhjoo S. Materials & Design,2009,30(8),3036.69 Yang S T, Li J W, Wei S Z, et al. The Chinese Journal of Nonferrous Metals,2011,21(9),2126(in Chinese).杨松涛,李继文,魏世忠,等.中国有色金属学报,2011,21(9),2126.
[1] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[2] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[3] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[4] 刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
[5] 吴萍萍, 张静静. 镁基复合材料高温变形研究进展[J]. 材料导报, 2018, 32(17): 3041-3050.
[6] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[7] 陈自鹏, 石少卿, 罗伟铭, 孙建虎, 范兰心. 高密度聚乙烯材料在大变形条件下的数值模拟研究*[J]. 《材料导报》期刊社, 2017, 31(20): 135-139.
[8] 罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
[9] 胡勇, 陈威, 李晓诚, 彭和思, 丁雨田. HMn62-3-3合金的热变形行为及热加工图*[J]. 《材料导报》期刊社, 2017, 31(16): 144-149.
[10] 丁雨田,高钰璧,豆正义,高鑫,贾智. GH3625合金管材冷变形行为及热处理工艺研究*[J]. 材料导报编辑部, 2017, 31(10): 70-76.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed