Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 1015-1019    https://doi.org/10.11896/j.issn.1005-023X.2018.06.030
  计算模拟 |
3003铝合金蠕变行为与本构方程
刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥
东南大学材料科学与工程学院,江苏省先进金属材料高技术研究重点实验室,南京 211189
Creep Behavior and Constitutive Equation of 3003 Aluminum Alloy
LIU Xiancui, PAN Ye, LU Tao, TANG Zhijiao, HE Weiqiao
Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 1930KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了3003铝合金冷轧变形后再结晶组织控制和175~250 ℃、外加应力25~50 MPa条件下3003铝合金的蠕变行为。采用弹性模量归一化应力幂律蠕变本构方程,对实验数据进行线性拟合,建立了能够较好描述稳态蠕变速率与应力、温度三者之间关系的本构方程。结果表明:采用350 ℃和600 ℃的两步再结晶退火,可获得有利于提高合金蠕变性能的长条状再结晶组织;温度越高,应力增加对稳态蠕变速率增加的贡献越大;不同温度下3003铝合金的蠕变机制不同,175 ℃时,应力指数n=3.5,蠕变主要由位错滑移控制;在200~250 ℃范围内,n处于5.1~8.6之间,蠕变主要由位错攀移控制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘贤翠
潘冶
陆韬
唐智骄
何为桥
关键词:  3003铝合金  再结晶组织  蠕变  本构方程    
Abstract: Recrystallization microstructure control and creep behaviors of cold rolled 3003 aluminum alloy were studied at temperatures of 175—250 ℃ and experimental stresses of 25—50 MPa. By adopting the equation of power law creep including elastic modulus normalized stress, the relationship between steady creep strain rate, stress and temperature was achieved. The result indicates that the two-step annealing at 350 ℃ and 600 ℃ can produce elongated grains, which are good for creep property. Higher temperature makes the stress contributed more in steady creep at increased strain rate. Results of further analysis of the creep mechanism of the alloy at different temperatures indicate that the creep mechanism of 3003 aluminum alloy differed at different temperatures, i.e., the dislocation glide creep mechanism at 175 ℃ (n=3.5) and the dislocation climb creep mechanism at 200—250 ℃ (n=5.1—8.6). By comparative analysis of the simulation and experiment, they are found to be in agreement with the experimental data, revealing that the established creep constitutive equations are suitable for different temperatures and stresses.
Key words:  3003 aluminum alloy    recrystallization microstructure    creep    constitutive equation
               出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TG146.2  
基金资助: 江苏省先进金属材料重点实验室资助项目(BM4737204)
通讯作者:  潘冶,男,1956年生,博士,教授,博士研究生导师,主要从事先进金属材料的制备与组织控制 E-mail:panye@seu.edu.cn   
作者简介:  刘贤翠:女,1989年生,硕士,研究方向为金属材料结构与性能 E-mail:liuxiancui2017@163.com
引用本文:    
刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
LIU Xiancui, PAN Ye, LU Tao, TANG Zhijiao, HE Weiqiao. Creep Behavior and Constitutive Equation of 3003 Aluminum Alloy. Materials Reports, 2018, 32(6): 1015-1019.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.030  或          http://www.mater-rep.com/CN/Y2018/V32/I6/1015
1 Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminum alloys for the automotive industry[J].Materials Science and Engineering:A,2000,280(1):37.
2 Zhang Yun, Wu Jianjun, Qi Xiangqian. Influence of alloying elements on mechanical properties of Al-Mn-Mg alloys[J].Material and Heat Treatment,2010,39(6):29(in Chinese).
张运,武建军,齐向前.合金成分对Al-Mn-Mg合金力学性能的影响[J].材料热处理技术,2010,39(6):29.
3 Wang Xiaoqing, Wu Junzi, Hu Wenxin, et al. Effect of Ce on corrosion of 3003 aluminum alloy[J].Chinese Rare Earths,2017,38(1):43(in Chinese).
王小青,吴俊子,胡文鑫,等.Ce对3003铝合金耐腐蚀性能的影响[J].稀土,2017,38(1):43.
4 Kahl S, Ekström H E, Mendoza J. Tensile, fatigue, and creep pro-perties of aluminum heat exchanger tube alloys for temperatures from 293 K to 573 K[J].Metallurgical and Materials Transactions:A,2013,45(2):663.
5 Northword D O, Smith I O. Stress change tests during the steady state creep of aluminum alloy 3004 at 300 ℃[J].Materials Science and Engineering,1986,79(2):448.
6 Liu K, Chen X G. Development of Al-Mn-Mg alloy for applications at elevated temperature via dispersoid strengthening[J].Material & Design,2015,84(5):340.
7 Chen Guiqing, Fu Gaosheng, Yan Wenduan, et al. Research on hot deformation behavior of 3003 Al alloy[J].Journal of Plasticity Engineering,2011,18(4):28(in Chinese).
陈贵清,傅高升,颜文煅,等.3003铝合金热变形行为[J].塑性工程学报,2011,18(4):28.
8 Zhang Xiao, Ren Zheng, Hu Lihua, et al. Hot deformation behavior of 3003/4004 two-layered aluminum alloy[J].Rare Metal Materials and Engineering,2016,45(10):2529(in Chinese).
张潇,任政,胡李华,等.3003/4004层合板铝合金热变形行为研究[J].稀有金属材料与工程,2016,45(10):2529.
9 Tu Y Y, Qian H, Zhou X F, et al. Effect of Sc on the interaction of concurrent precipitation and recrystallization in commercial AA3003 aluminum alloy[J].Metallurgical and Materials Transactions:A,2014,45(4):1883.
10 Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena[M].Second Edition.Oxford:Pergamon Press,2004:285.
11 张俊善.材料的高温变形与断裂[M].北京:科学出版社,2007:4.
12 Zhu Shijie. Effect of grain shape and carbide on creep crack growth of HK40 steel[J].Acta Metallurgica Sinica,1990,26(3):231(in Chinese).
朱世杰. 晶粒形状和碳化物对HK40蠕变裂纹扩展的影响[J].金属学报,1990,26(3):231.
13 Shi H, Mclaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys[J].Materials Science and Technology,1997,13(3):210.
14 Yin Xuni, Zhan Lihua, Zhao Jun. Establishment of steady creep constitutive equation of 2219 aluminum alloy[J].The Chinese Journal of Nonferrous Metals,2014,24(9):2523(in Chinese).
尹旭妮,湛利华,赵俊.2219铝合金稳态蠕变本构方程的建立[J].中国有色金属学报,2014,24(9):2523.
15 Song Jiawei, Jin Peipeng, Wang Jinhui, et al. Thermal deformation behavior of SiCp/Al composite material with low SiC volum fraction[J].Materials Review B:Research Papers,2015,29(2):163(in Chinese).
宋加伟,金培鹏,王金辉,等.低体积分数SiCp/Al复合材料热变形行为的研究[J].材料导报:研究篇,2015,29(2):163.
16 Kaufman J G. Properties of aluminum alloys: Tensile, creep, and fatigue data at high and low temperatures[M].USA:ASM Internatio-nal,1999:58.
17 Kassner M E, Pérez-Prado M T. Five-power-law creep in single phase metals and alloys[J].Progress in Materials Science,2000,45(1):68.
18 Liu L F, Zhan L H, Li W K. Creep aging behavior characterization of 2219 aluminum alloy[J].Metals-Open Access Metallurgy Journal,2016,6(7):146.
[1] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[2] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[3] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[4] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[5] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[6] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[7] 洪凯, 吴林, 蒋伟, 吴继礼, 张博. Cu-Zr非晶合金薄带的高温拉伸蠕变研究[J]. 材料导报, 2018, 32(24): 4309-4313.
[8] 薛喜丽, 陈鑫, 李龙, 周德敬. Mn、Fe含量对3003铝合金铸锭均匀化行为的影响[J]. 材料导报, 2018, 32(22): 3913-3918.
[9] 吴萍萍, 张静静. 镁基复合材料高温变形研究进展[J]. 材料导报, 2018, 32(17): 3041-3050.
[10] 刘武, 鲁金涛, 黄锦阳, 党莹樱, 赵新宝, 赵麦群, 袁勇. 模拟烟灰/气腐蚀对Super304H钢高温持久性能的影响[J]. 材料导报, 2018, 32(16): 2787-2792.
[11] 郭苗苗,刘新宝,朱 麟,张 琦,刘剑秋. 基于EBSD技术的P91钢蠕变过程中小角度晶界演化行为表征[J]. 《材料导报》期刊社, 2018, 32(10): 1747-1751.
[12] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[13] 丁学明, 周素洪, 叶兵, 蒋海燕, 王渠东, 丁文江. 锌铜钛合金的研究进展与应用*[J]. 《材料导报》期刊社, 2017, 31(3): 38-43.
[14] 方瑞杰,刘军,陈建恩,王肖锋. 多耦合拘束效应对P92钢蠕变裂纹扩展行为的影响*[J]. 材料导报编辑部, 2017, 31(22): 153-158.
[15] 陈自鹏, 石少卿, 罗伟铭, 孙建虎, 范兰心. 高密度聚乙烯材料在大变形条件下的数值模拟研究*[J]. 《材料导报》期刊社, 2017, 31(20): 135-139.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed