Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 1015-1019    https://doi.org/10.11896/j.issn.1005-023X.2018.06.030
  计算模拟 |
3003铝合金蠕变行为与本构方程
刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥
东南大学材料科学与工程学院,江苏省先进金属材料高技术研究重点实验室,南京 211189
Creep Behavior and Constitutive Equation of 3003 Aluminum Alloy
LIU Xiancui, PAN Ye, LU Tao, TANG Zhijiao, HE Weiqiao
Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 1930KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了3003铝合金冷轧变形后再结晶组织控制和175~250 ℃、外加应力25~50 MPa条件下3003铝合金的蠕变行为。采用弹性模量归一化应力幂律蠕变本构方程,对实验数据进行线性拟合,建立了能够较好描述稳态蠕变速率与应力、温度三者之间关系的本构方程。结果表明:采用350 ℃和600 ℃的两步再结晶退火,可获得有利于提高合金蠕变性能的长条状再结晶组织;温度越高,应力增加对稳态蠕变速率增加的贡献越大;不同温度下3003铝合金的蠕变机制不同,175 ℃时,应力指数n=3.5,蠕变主要由位错滑移控制;在200~250 ℃范围内,n处于5.1~8.6之间,蠕变主要由位错攀移控制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘贤翠
潘冶
陆韬
唐智骄
何为桥
关键词:  3003铝合金  再结晶组织  蠕变  本构方程    
Abstract: Recrystallization microstructure control and creep behaviors of cold rolled 3003 aluminum alloy were studied at temperatures of 175—250 ℃ and experimental stresses of 25—50 MPa. By adopting the equation of power law creep including elastic modulus normalized stress, the relationship between steady creep strain rate, stress and temperature was achieved. The result indicates that the two-step annealing at 350 ℃ and 600 ℃ can produce elongated grains, which are good for creep property. Higher temperature makes the stress contributed more in steady creep at increased strain rate. Results of further analysis of the creep mechanism of the alloy at different temperatures indicate that the creep mechanism of 3003 aluminum alloy differed at different temperatures, i.e., the dislocation glide creep mechanism at 175 ℃ (n=3.5) and the dislocation climb creep mechanism at 200—250 ℃ (n=5.1—8.6). By comparative analysis of the simulation and experiment, they are found to be in agreement with the experimental data, revealing that the established creep constitutive equations are suitable for different temperatures and stresses.
Key words:  3003 aluminum alloy    recrystallization microstructure    creep    constitutive equation
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TG146.2  
基金资助: 江苏省先进金属材料重点实验室资助项目(BM4737204)
通讯作者:  潘冶,男,1956年生,博士,教授,博士研究生导师,主要从事先进金属材料的制备与组织控制 E-mail:panye@seu.edu.cn   
作者简介:  刘贤翠:女,1989年生,硕士,研究方向为金属材料结构与性能 E-mail:liuxiancui2017@163.com
引用本文:    
刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
LIU Xiancui, PAN Ye, LU Tao, TANG Zhijiao, HE Weiqiao. Creep Behavior and Constitutive Equation of 3003 Aluminum Alloy. Materials Reports, 2018, 32(6): 1015-1019.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.030  或          https://www.mater-rep.com/CN/Y2018/V32/I6/1015
1 Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminum alloys for the automotive industry[J].Materials Science and Engineering:A,2000,280(1):37.
2 Zhang Yun, Wu Jianjun, Qi Xiangqian. Influence of alloying elements on mechanical properties of Al-Mn-Mg alloys[J].Material and Heat Treatment,2010,39(6):29(in Chinese).
张运,武建军,齐向前.合金成分对Al-Mn-Mg合金力学性能的影响[J].材料热处理技术,2010,39(6):29.
3 Wang Xiaoqing, Wu Junzi, Hu Wenxin, et al. Effect of Ce on corrosion of 3003 aluminum alloy[J].Chinese Rare Earths,2017,38(1):43(in Chinese).
王小青,吴俊子,胡文鑫,等.Ce对3003铝合金耐腐蚀性能的影响[J].稀土,2017,38(1):43.
4 Kahl S, Ekström H E, Mendoza J. Tensile, fatigue, and creep pro-perties of aluminum heat exchanger tube alloys for temperatures from 293 K to 573 K[J].Metallurgical and Materials Transactions:A,2013,45(2):663.
5 Northword D O, Smith I O. Stress change tests during the steady state creep of aluminum alloy 3004 at 300 ℃[J].Materials Science and Engineering,1986,79(2):448.
6 Liu K, Chen X G. Development of Al-Mn-Mg alloy for applications at elevated temperature via dispersoid strengthening[J].Material & Design,2015,84(5):340.
7 Chen Guiqing, Fu Gaosheng, Yan Wenduan, et al. Research on hot deformation behavior of 3003 Al alloy[J].Journal of Plasticity Engineering,2011,18(4):28(in Chinese).
陈贵清,傅高升,颜文煅,等.3003铝合金热变形行为[J].塑性工程学报,2011,18(4):28.
8 Zhang Xiao, Ren Zheng, Hu Lihua, et al. Hot deformation behavior of 3003/4004 two-layered aluminum alloy[J].Rare Metal Materials and Engineering,2016,45(10):2529(in Chinese).
张潇,任政,胡李华,等.3003/4004层合板铝合金热变形行为研究[J].稀有金属材料与工程,2016,45(10):2529.
9 Tu Y Y, Qian H, Zhou X F, et al. Effect of Sc on the interaction of concurrent precipitation and recrystallization in commercial AA3003 aluminum alloy[J].Metallurgical and Materials Transactions:A,2014,45(4):1883.
10 Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena[M].Second Edition.Oxford:Pergamon Press,2004:285.
11 张俊善.材料的高温变形与断裂[M].北京:科学出版社,2007:4.
12 Zhu Shijie. Effect of grain shape and carbide on creep crack growth of HK40 steel[J].Acta Metallurgica Sinica,1990,26(3):231(in Chinese).
朱世杰. 晶粒形状和碳化物对HK40蠕变裂纹扩展的影响[J].金属学报,1990,26(3):231.
13 Shi H, Mclaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys[J].Materials Science and Technology,1997,13(3):210.
14 Yin Xuni, Zhan Lihua, Zhao Jun. Establishment of steady creep constitutive equation of 2219 aluminum alloy[J].The Chinese Journal of Nonferrous Metals,2014,24(9):2523(in Chinese).
尹旭妮,湛利华,赵俊.2219铝合金稳态蠕变本构方程的建立[J].中国有色金属学报,2014,24(9):2523.
15 Song Jiawei, Jin Peipeng, Wang Jinhui, et al. Thermal deformation behavior of SiCp/Al composite material with low SiC volum fraction[J].Materials Review B:Research Papers,2015,29(2):163(in Chinese).
宋加伟,金培鹏,王金辉,等.低体积分数SiCp/Al复合材料热变形行为的研究[J].材料导报:研究篇,2015,29(2):163.
16 Kaufman J G. Properties of aluminum alloys: Tensile, creep, and fatigue data at high and low temperatures[M].USA:ASM Internatio-nal,1999:58.
17 Kassner M E, Pérez-Prado M T. Five-power-law creep in single phase metals and alloys[J].Progress in Materials Science,2000,45(1):68.
18 Liu L F, Zhan L H, Li W K. Creep aging behavior characterization of 2219 aluminum alloy[J].Metals-Open Access Metallurgy Journal,2016,6(7):146.
[1] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[2] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[3] 王帆, 王西涛, 徐世光, 何金珊. 基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为[J]. 材料导报, 2024, 38(17): 23060023-7.
[4] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[5] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[6] 李志尧, 文鑫, 杨晨光, 王栋. 表面具有交联结构的UHMWPE纤维的制备及抗蠕变性能研究[J]. 材料导报, 2023, 37(21): 22040008-6.
[7] 陈刚, 姚远超, 贾寓真, 苏斌, 刘国跃, 曾斌. 30Cr4MoNiV超高强度钢热变形本构方程的构建与优化[J]. 材料导报, 2022, 36(21): 21010158-7.
[8] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[9] 关海昆, 李全安, 陈晓亚, 张帅, 王颂博. Mg-11Gd-2Y-1.5Ag-0.5Zr合金的高温蠕变行为[J]. 材料导报, 2021, 35(6): 6126-6130.
[10] 苏粤兰, 罗兵辉, 柏振海, 莫文锋, 何川. Al-Mg-Si-In合金的热变形行为和热轧工艺[J]. 材料导报, 2021, 35(20): 20137-20142.
[11] 易宗鑫, 李小强, 潘存良, 沈正章. 等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究[J]. 材料导报, 2021, 35(18): 18146-18152.
[12] 何春雨, 余伟, 程知松, 王铭阳, 唐荻. 高强耐蚀车体用钢热变形行为及本构方程的研究[J]. 材料导报, 2021, 35(18): 18153-18162.
[13] 孙茗, 庄景巍, 邓海亮, 陈子洋, 斯松华, 张瑞敏. 高温抗蠕变铝合金及铝基复合材料研究进展[J]. 材料导报, 2021, 35(11): 11137-11144.
[14] 戴文亭, 郝如意, 李颖松, 常孟元, 郭威. 疏水性纳米白炭黑沥青混合料的蠕变参数对动稳定度的敏感性分析[J]. 材料导报, 2020, 34(Z1): 237-240.
[15] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed