Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 1020-1025    https://doi.org/10.11896/j.issn.1005-023X.2018.06.031
  计算模拟 |
基于修正Drucker-Prager Cap模型的金属粉末成形本构模型参数确定方法
周蕊1, 李璐璐2, 谢东2, 张建国2, 吴孟丽1
1 中国民航大学航空工程学院,天津 300300;
2 天津科技大学机械工程学院,天津 300222
A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model
ZHOU Rui1, LI Lulu2, XIE Dong2, ZHANG Jianguo2, WU Mengli1
1 School of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300;
2 School of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222
下载:  全 文 ( PDF ) ( 1605KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对修正Drucker-Prager Cap模型参数复杂且难准确获取的问题,提出一种采用相对简单实验操作结合联合仿真反演优化确定模型参数的方法,用于金属粉末成形的数值模拟。首先通过实验分析与理论推导,确定重点反演优化参数,即偏心距参数R;采用联合仿真反演优化方法,借助ABAQUS有限元及二次开发平台与MATLAB优化算法,对参数R进行反演计算,进而完成相关硬化参数的确定;以金属粉末Distaloy AE为例,讨论参数R不同函数表达形式的反演结果对粉末压制成形过程数值模拟的影响。研究结果表明,偏心距参数R2及其关联的硬化参数比R1在压制力、脱模力、相对密度和残余应力数值模拟方面具有更高的准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周蕊
李璐璐
谢东
张建国
吴孟丽
关键词:  金属粉末成形  本构模型参数  修正Drucker-Prager  Cap模型  反演优化    
Abstract: Aiming to provide alleviations for the problems of the modified Drucker-Prager Cap model including complexity and low accuracy of the obtained parameters, a combinational constitutive parameter determining method that involves both simple expe-riment and inverse optimization was proposed and applied to numerical simulation of metal powder compaction. First, the important inverse optimization parameter called the cap eccentricity parameter R was determined by the experimental analysis and theoretical derivation. Then, the simulation method using ABAQUS finite element platform and MATLAB optimization algorithm was implemented for inverse optimization of parameter R and calculation of the related hardening parameters. The metal powder Distaloy AE was used to discuss the influence of the inverse results of different R on the numerical simulation of powder compaction process. The results showed that the cap eccentricity parameter R2 and its associated hardening parameters were more accurate than R1 for the numerical simulation of the pressing force, ejection force, relative density and residual stresses.
Key words:  metal powder compaction    constitutive model parameters    modified Drucker-Prager Cap model    inverse optimization
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TF12  
基金资助: 国家青年科学基金(51505483); 天津市自然科学基金(15JCQNJC42900); 中国民航大学科研启动基金(2013QD13X); 中央高校基本科研业务费(3122013C012)
通讯作者:  吴孟丽, 1979年生,博士,副教授,主要研究方向为零件成形制造 E-mail:wuml2004@qq.com   
作者简介:  周蕊:女,1983年生,博士,讲师,主要研究方向为塑性成形理论及数值模拟研究 E-mail:reaterbutter@163.com
引用本文:    
周蕊, 李璐璐, 谢东, 张建国, 吴孟丽. 基于修正Drucker-Prager Cap模型的金属粉末成形本构模型参数确定方法[J]. 材料导报, 2018, 32(6): 1020-1025.
ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model. Materials Reports, 2018, 32(6): 1020-1025.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.031  或          https://www.mater-rep.com/CN/Y2018/V32/I6/1020
1 周照耀,李元元.金属粉末成形力学建模与计算机模拟[M].广州:华南理工大学出版社,2011:5.
2 董林峰.粉末金属成形过程计算机仿真与缺陷预测[M].北京:冶金工业出版社,2011:4.
3 Yazici B A, Kraft T, Riedel H. Finite element modeling of PM surface densification process[J].Powder Metallurgy,2008,51(3):211.
4 Kang C S,Lee S C,Tim K T,et al.Densification behavior of iron powder during cold stepped compaction[J].Materials Science and Engineering,2007,452-453:359.
5 Wang Deguang,Wu Yucheng,Jiao Minghua,et al.Finite element simulation of influence of different compacting processes on powder metallurgic products properties[J].Chinese Journal of Mechanical Engineering,2008,44(1):205 (in Chinese).
王德广,吴玉程,焦明华,等.不同压制工艺对粉末冶金制品性能影响的有限元模拟[J].机械工程学报,2008,44(1):205.
6 Biswas K. Comparison of various plasticity models for metal powder compaction processes[J].Journal of Materials Processing Technology,2005,16:107.
7 Rahman M M, Ariffin A K, Nor S S M. Development of a finite element model of metal powder compaction process at elevated tempe-rature[J].Applied Mathematical Modelling,2009,33:4031.
8 Andersson D C,Larsson P L,Cadario A,et al.On the influence from punch geometry on the stress distribution at powder compaction[J].Powder Technology,2010,202(1-3):78.
9 Diarra H,Mazel V,Boillon A,et al.Finite element modeling of powder compaction of cosmetic products:Comparison between simulated and experimental results[J].Powder Technology,2012,224:233.
10 Shin H,Kim J B,Kim S J,et al.A simulation-based determination of cap parameters of the modified Drucker-Prager cap model by consi-dering specimen barreling during conventional triaxial testing[J].Computational Materials Science,2015,100:31.
11 SIMULIA Inc.Abaqus 6.10 theory manual[M].Providence,USA:Software Corporation,2009:115.
12 Drucker D C,Prager W.Soil mechanics and plastic analysis or limit design[J].Quarterly Journal of Applied Mathematics,1952,10:157.
13 Chtourou H,Guillot M,Gakwaya A.Modeling of the metal powder compaction process using the cap model. Part Ⅰ.Experimental mate-rial characterization and validation[J].International Journal of Solids and Structures,2002,39(4):1059.
14 Zhang Baosheng,Jain Mukesh,Zhao Chenghao,et al.Experimental calibration of density-dependent modified Drucker-Prager/Cap model using an instrumented cubic die for powder compact[J].Powder Technology,2010,204:27.
15 Wu C Y,Hancock B C,Mills A,et al.Numerical and experimental investigation of capping mechanisms during pharmaceutical tablet compaction[J].Powder Technology,2008,181(2):121.
16 Brewin P R, Coube O, Doremus P, et al. Modelling of powder die compaction[M].London:Springer-Verlag,2010.
17 Tu Tingsheng,Lin Dawei.A comment on the Poisson’s ratio model of sintered metal powder materials[J].Metal Forming Technology,2001,19(2):4 (in Chinese).
屠挺生,林大为.金属粉末烧结泊松比模型的探讨[J].金属成形工艺,2001,19(2):4.
18 Coube O, Riedel H. Numerical simulation of metal powder die compaction with special consideration of cracking[J].Powder Metallurgy,2000,43(2):123.
19 Zhou Rui, Zhang Lianhong, He Baiyan, et al. Numerical simulation of residual stress field in green powder metallurgy compacts by modified Drucker-Prager Cap model[J].Transactions of Nonferrous Me-tals Society of China,2013,23:2374.
[1] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed