Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 136-140    https://doi.org/10.11896/j.issn.1005-023X.2017.018.027
  计算模拟 |
新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*
罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔
江苏大学材料科学与工程学院,镇江 212013
Dynamic Recrystallization Behavior of an Alumina-forming Austenitic Alloy Fe-20Cr-30Ni-0.6Nb-2Al-Mo
LUO Rui, CHENG Xiaonong, ZHENG Qi, ZHU Jingjing, WANG Jiao, LIU Tian, CHEN Guang, YANG Qiao
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013
下载:  全 文 ( PDF ) ( 2413KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在Gleeble-3500热力模拟试验机上对一种新型奥氏体耐热合金(Fe-20Cr-30Ni-0.6Nb-2Al-Mo)进行单道次热压缩实验,结合OM、EBSD及TEM等表征手段,研究了该合金在950~1 100 ℃和0.01~1 s-1热变形参数下的动态再结晶行为,采用回归法确定了合金的热变形激活能和表观应力指数,并以此构建其高温本构模型。实验结果表明,新型奥氏体耐热合金的应力水平随变形温度的升高而降低,随应变速率的增大而升高;动态再结晶行为更易发生在较高变形温度或较低应变速率下。采用lnθ-ε曲线的三次多项式拟合求解临界再结晶拐点的方法,较准确地预测了合金的动态再结晶临界点。此外,归纳出该合金在动态再结晶过程中的形核机制,主要包括应变诱导晶界迁移、晶粒碎化以及亚晶的合并。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗锐
程晓农
郑琦
朱晶晶
王皎
刘天
陈光
杨乔
关键词:  含铝奥氏体耐热合金  流变应力  本构方程  动态再结晶行为  形核机制    
Abstract: Isothermal compression tests at a temperature of 950—1 100 ℃ and strain rates ranging from 0.01 to 1 s-1 were performed on alumina-forming austenitic (AFA) alloy Fe-20Cr-30Ni-0.6Nb-2Al-Mo to reveal the hot deformation characteristics. The evolutions of microstructure and nucleation mechanisms of dynamic recrystallization (DRX) were analyzed combined with the technique of OM, EBSD and TEM. The regression method was adopted to determine the thermal deformation activation energy, apparent stress index, and to construct a thermal deformation constitutive model. The results show that the flow stress is strongly dependent on deformation temperature and strain rate, which increases with decreasing temperature and increasing strain rate. The DRX phenomenon occurred more easily at comparably higher deformation temperatures or lower strain rates. Based on the method for solving the inflection point via cubic polynomial fitting of lnθ-ε curves, the critical strain (εc) during DRX were precisely predicted. The nucleation mechanisms of DRX during thermal deformation mainly included the strain-induced grain boundary (GB) migration, grain fragmentation, and subgrain coalescence.
Key words:  alumina-forming austenitic alloy    flow stress    constitutive equation    dynamic recrystallization behavior    nucleation mechanism
               出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TG146.4  
基金资助: “十二五”国家高技术研究发展计划(863计划)重大资助项目(2012AA03A501);江苏省2014年度普通高校研究生科研创新计划项目(KYLY-1027)
作者简介:  罗锐:男,1988年生,博士,主要研究方向为高端金属结构材料的热加工性能 E-mail:luoruiweiyi@163.com
引用本文:    
罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
LUO Rui, CHENG Xiaonong, ZHENG Qi, ZHU Jingjing, WANG Jiao, LIU Tian, CHEN Guang, YANG Qiao. Dynamic Recrystallization Behavior of an Alumina-forming Austenitic Alloy Fe-20Cr-30Ni-0.6Nb-2Al-Mo. Materials Reports, 2017, 31(18): 136-140.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.027  或          http://www.mater-rep.com/CN/Y2017/V31/I18/136
1 Viswanathan R, Bakker W. Materials for ultrasupercritical coal power plants-boiler materials: Part 1[J]. J Mater Eng Perform, 2001,10(1):81.
2 Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007,316:433.
3 Yamamoto Y, Takeyama M, Lu Z P, et al. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates[J]. Intermetallics, 2008,16:453.
4 Nie S H, Chen Y, Ren X, et al. Corrosion of alumina-forming austenitic steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti in supercritical water[J]. J Nucl Mater, 2010,399:231.
5 Bei H, Yamamoto Y, Brady M P, et al. Aging effects on the mechanical properties of alumina-forming austenitic stainless steels[J]. Mater Sci Eng A, 2010,527:2079.
6 Yamamoto Y, Muralidharan G, Brady M P. Development of L12-ordered Ni3(Al,Ti)-strengthened alumina-forming austenitic stainless steel alloys[J]. Scr Mater, 2013,69:816.
7 Zhou Haitao, Liu Zhichao, Wen Shengfa, et al. Dynamic recrystallization behavior of GH625 superalloy during hot deformation[J]. Rare Metal Mater Eng, 2012,41(11):1917(in Chinese).
周海涛,刘志超,温盛发,等. GH625合金的动态再结晶行为研究[J]. 稀有金属材料与工程, 2012,41(11):1917.
8 Wei Hailian, Liu Guoquan, Xiao Xiang, et al. Apparent and physically based constitutive analyses for hot deformation of austenite in 35Mn2 steel[J]. Acta Metall Sin, 2013,49(6):731 (in Chinese).
魏海莲,刘国权,肖翔,等. 表观的和基于物理的35Mn钢奥氏体热变形本构分析[J]. 金属学报, 2013,49(6):731.
9 Ebrahimi G R, Keshmiri H, Momeni A, et al. Dynamic recrystallization behavior of a superaustenitic stainless steel containing 16%Cr and 25%Ni[J]. Mater Sci Eng A, 2011,528: 488.
10Ryan N D, McQueen H J. Flow stress, dynamic restoration, strain hardening and ductility in hot wording of 316 steel[J]. J Mater Processing Technol, 1990,21(2):177.
11Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ Int, 2003,43(5):684.
12Najafizadeh A, Jonas J J. Predicting the critical stress for initiation of dynamic recrystallization[J]. ISIJ Int, 2006,46(11):1679.
13Sellars C M, Mc Tegart W J. On the mechanism of hot deformation[J]. Acta Metall, 1966,14(9):1136.
14Slooff F A, Zhou J, Duszczyk J, et al. Constitutive analysis of wrought magnesium alloy Mg-Al4-Zn1[J]. Scr Mater, 2007,57:759.
15Lin Y C, Chen Mingsong, Zhong Jue. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J]. Comput Mater Sci, 2008,42:470.
16Cao Yu, Di Hongshuang, Zhang Jiecen, et al. Research on dynamic recrystallization behavior of incology 800H[J]. Acta Metall Sin, 2012,48(10):1175(in Chinese).
曹宇,邸洪双,张洁岑,等. 800H合金动态再结晶行为研究[J]. 金属学报, 2012,48(10):1175.
17Cao Yu, Di Hongshuang, Ma Tianjun, et al. Hot deformation behavior of alloy 800H[J]. J Northeastern University: Nat Sci Ed, 2012,33(2):213(in Chinese).
曹宇,邸洪双,马天军,等. 800H合金热变形行为研究[J], 东北大学学报:自然科学版, 2012,33(2):213.
[1] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[2] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[3] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[4] 刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
[5] 祝佳林, 刘施峰, 柳亚辉, 姬静利, 李丽娟. 冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应[J]. 材料导报, 2018, 32(20): 3595-3600.
[6] 吴萍萍, 张静静. 镁基复合材料高温变形研究进展[J]. 材料导报, 2018, 32(17): 3041-3050.
[7] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[8] 陈自鹏, 石少卿, 罗伟铭, 孙建虎, 范兰心. 高密度聚乙烯材料在大变形条件下的数值模拟研究*[J]. 《材料导报》期刊社, 2017, 31(20): 135-139.
[9] 胡勇, 陈威, 李晓诚, 彭和思, 丁雨田. HMn62-3-3合金的热变形行为及热加工图*[J]. 《材料导报》期刊社, 2017, 31(16): 144-149.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed