Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3290-3297    https://doi.org/10.11896/cldb.18070252
  金属与金属基复合材料 |
分子动力学在镁及镁合金微观塑性变形中的应用进展
王煜烨1, 汤爱涛1,2, 潘荣剑3, 潘复生1,2
1 重庆大学材料科学与工程学院,重庆 400044;
2 重庆大学国家镁合金材料工程技术研究中心,重庆 400044;
3 中国核动力研究设计院第一研究所,成都 610005
Progress in the Application of Molecular Dynamics in Microscopic Plastic Deformation of Magnesium and Its Alloys
WANG Yuye1, TANG Aitao1,2, PAN Rongjian3, PAN Fusheng1,2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044;
2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044;
3 The First Sub-Institute, Nuclear Power Institute of China, Chengdu 610005
下载:  全 文 ( PDF ) ( 2057KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金作为最轻的金属结构材料,具有比强度和比刚度高等优点,被视为极具应用潜力的轻合金。然而,镁合金为密排六方结构,可启动的滑移系少,室温塑性变形能力较差,这成为限制其广泛应用的主要原因之一。因此深入研究镁及其合金的微观塑性变形机制能为合金设计、加工工艺优化提供思路。
镁及镁合金的微观塑性变形行为和机制较复杂,仅通过试验方法较难厘清具体微观结构、变形条件与材料性质之间的关系。而分子动力学作为研究原子(或分子)微观尺度下的行为和性质的重要方法,近年来在镁及其合金中的应用受到越来越多的关注。
分子动力学方法可用于计算各类热力学及动力学性质,同时还可以模拟特定加载条件下的原子运动情况。对于镁及镁合金的微观塑性变形机制,目前研究者多关注位错与滑移、孪晶、晶界等问题。镁及镁合金最基本的滑移系为基面滑移系,同时还有潜在的柱面滑移系和锥面滑移系,研究者一般利用分子动力学模拟拉伸、压缩等情况来探究镁及镁合金中各滑移系的开动情况,其中对〈c+a〉位错的滑移和分解的情况研究较多。同时,由于镁及镁合金滑移系较少,相比于面心立方和体心立方结构金属,孪生对镁及镁合金塑性变形能力的贡献更不容忽视,已有研究者利用设置初始缺陷、微结构、溶质原子等方法模拟孪晶的形核与长大过程,讨论孪晶的形核条件及产生的孪晶类型。对晶界的研究可与细晶强化、织构等多晶体塑性变形机制相联系,但目前分子动力学方法能达到的尺寸规模还难以模拟出微米级的多晶,因此研究者多关注双晶、纳米多晶的晶界迁移行为以及晶界与其他微结构的交互作用等问题。同时,分子动力学计算模拟的可靠性主要依赖于势函数的精确性,早期由于势函数的不足,分子动力学方法仅在纯镁中应用较多。近年来随着势函数的研究增多,特别是次近邻修正嵌入原子势的发展,可用于描述二元系镁合金原子间作用的势函数开始丰富,对于镁合金的分子动力学研究也逐渐增多。
本文对分子动力学理论和方法进行了简介,重点综述了分子动力学方法对镁及其合金的微观塑性变形机理的研究。从分子动力学方法在镁及其合金的势函数、位错滑移、孪晶、晶界、固溶及第二相等方面的应用进行概述,并对分子动力学模拟方法运用于镁及其合金进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王煜烨
汤爱涛
潘荣剑
潘复生
关键词:  镁合金  分子动力学  塑性变形  原子间作用势    
Abstract: As the lightest metal structural materials, magnesium alloy has great application potential due to its high specific strength and specific stiffness. However, magnesium alloy is a hexagonal close packed structure with a limited number of active slip systems so that low ability of plastic deformation at room temperature becomes one of the major reasons limits the wider applications of magnesium alloy. Investigating and understan-ding the microscopic plastic deformation mechanism of magnesium and its alloys can provide further innovation to design alloys and optimize process.
The complex behavior and the mechanism of plastic deformation in magnesium and its alloys result in clarifying the relationships between microstructure, deformation condition and materials properties difficultly only using experimental methods. Since molecular dynamics (MD) is an important method to understand various properties and phenomena of atoms or molecules under microscale, it attracts increasing attention to be applied to study magnesium and its alloys.
It can calculate various thermodynamic and kinetic properties, and simulate atomic motion under specific loading conditions by using MD. Accordingly, recent reports pay more attention to the problems of dislocation and slips, twinning, and grain boundary about the microscopic deformation mechanism of magnesium and its alloys which basic slip system is basal slip, and the potential slip systems are prismatic and pyramidal slips. Generally, MD can be performed to explore the activity of slip systems under tension or compression, especially the slide and dissociation of 〈c+a〉 dislocation. In comparison with face-centered cubic and body-centered cubic metal, the contribution of twinning to plastic deformation is more obvious in magnesium and its alloys because of the less slip systems. There have been studies that discuss the nucleation conditions and the types of twins through setting initial defect, microstructure, solute atoms or other cases to simulate the nucleation and growth of twins. The study of grain boundaries can be related to the mechanism of polycrystalline plastic deformation such as fine grain strengthening and texture. Ho-wever, the size scale that can be achieved by MD methods is still difficult to simulate micron-sized polycrystals so that researchers tended to rea-lize the migration behavior and the interaction with other microstructures of grain boundaries in bi-crystals and nanopolycrystals. Important here is that the reliability of MD depends mainly on the accuracy of the interatomic potentials. In the early days, MD is only used in pure magnesium with the lack of interatomic potentials. And in recent years, with the improvement of interatomic potentials, especially the second nearest neighbor modified embedded-atom method (2NN MEAM), the investigations of magnesium and its alloys are increasing together with the development of interatomic potentials which can be used to describe binary magnesium alloys.
In this paper, the MD theory and method are introduced briefly, and go further to review the MD to study the microscopic plastic deformation mechanism of magnesium and its alloys. It summarized the application of MD in interatomic potentials of magnesium and its alloys, dislocation and slips, twinning, grain boundary, solute atoms and second phases. At the end, it presented several prospects about MD applied to magnesium and its alloys.
Key words:  magnesium alloys    molecular dynamics    plastic deformation    interatomic potentials
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TG146  
  TG111  
基金资助: 国家重点研发计划项目(2016YFB0301100);国家自然科学基金(51531002;51474043)
作者简介:  王煜烨,硕士研究生,2016年毕业于河海大学,获得金属材料工程工学学士学位。现为重庆大学硕士研究生,在汤爱涛教授的指导下进行研究,主要研究领域为镁合金的分子动力学计算模拟。汤爱涛教授,博士研究生导师,国家镁合金材料工程技术研究中心骨干研究人员。以镁合金、铝合金和复合材料为重点,主要从事材料数据库、材料的计算模拟以及高性能材料的研究。1984年本科毕业于重庆大学冶金系,2004年博士毕业于重庆大学材料学院,先后担任了五门本科课程和一门研究生课程的教学工作,是“计算机在材料科学与工程中的应用课程”的骨干教师。出版过教材和专著,负责和主研过多项国家级科研项目。作为持证人获得国家科技进步二等奖一项、教育部科技进步一等奖一项、中国高校科技进步一等奖一项、重庆市科技进步三等奖一项,并获得多项国家授权发明专利,发表重要论文60多篇。tat@cqu.edu.cn.潘复生教授,重庆大学教授、博士研究生导师,中国工程院院士。重庆大学国家镁合金材料工程技术研究中心主任,重庆市科学技术协会主席,重庆市科学技术研究院(简称重科院和重庆科学院)院长,中国工程科技发展战略重庆研究院院长。德国斯图加特大学和日本千叶大学客座科学家,英国玛丽皇后学院访问教授,澳大利亚昆士兰大学荣誉教授,俄罗斯矿业科学院院士,亚太材料科学院院士。现兼任国际标准化组织(ISO)“镁及镁合金技术委员会”主席、Elsevier出版社 Journal of Magnesium and Alloys国际刊物主编、科学出版社《大学科普丛书》编委会主任、中国材料研究学会副理事长等。潘复生专长镁合金、铝合金、工具钢、冶金铸轧技术、冶金熔体纯净化技术等方面的研究和应用,已发表SCI收录论文450多篇,出版著作12部(本)。
引用本文:    
王煜烨, 汤爱涛, 潘荣剑, 潘复生. 分子动力学在镁及镁合金微观塑性变形中的应用进展[J]. 材料导报, 2019, 33(19): 3290-3297.
WANG Yuye, TANG Aitao, PAN Rongjian, PAN Fusheng. Progress in the Application of Molecular Dynamics in Microscopic Plastic Deformation of Magnesium and Its Alloys. Materials Reports, 2019, 33(19): 3290-3297.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070252  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3290
1 Chen Z H. Wrought magnesium alloy, Chemical Industry Press, China,2005(in Chinese).陈振华.变形镁合金,化学工业出版社,2005.2 Wu J Y, Tang A T, Pang F S. Materials Review A:Review Papers,2012,26(11),119(in Chinese).吴菊英,汤爱涛,潘复生.材料导报:综述篇,2012,26(11),119.3 Wu F D, Zheng H D, Liu J X, et al. Journal of Chongqing University of Technology (Natural Science),2013,27(10),59(in Chinese).吴方棣,郑辉东,刘俊劭,等.重庆理工大学学报(自然科学),2013,27(10),59.4 Zhou N G, Hong T, Zhou L. Acta Physica Sinica,2012,61(2),479(in Chinese).周耐根,洪涛,周浪.物理学报,2012,61(2),479.5 Chui C P, Liu W, Xu Y, et al. Spin,2015,5(4),1540007.6 Lao J, Tam M N, Pinisetty D, et al. JOM,2013,65(2),175.7 Karkina L E, Karkin I N, Kuznetsov A R, et al. Computational Materials Science,2016,112,18.8 Qi H G. Atomistic simulation of deformation bahavior and the micro-structural evolution in magnesium single crystal. Ph.D. Thesis, Beijing Jiaotong University, China,2013(in Chinese).亓宏刚.镁单晶形变及微结构演化行为分析.博士学位论文,北京交通大学2013.9 Lu Z, Noordhoek M J, Chernatynskiy A, et al. Journal of Nuclear Mate-rials,2015,462,147.10 Lee J G. Computational materials science: An introduction, CRC Press, USA,2011.11 Gullett P M, Wagner G J, Slepoy A. Numerical tools for atomistic simulations, Sandia National Laboratories, USA,2004. 12 Wen Y H, Zhu R Z, Zhou F X, et al Advances in Mechanics,2003,33(1),65(in Chinese).文玉华,朱如曾,周富信,等.力学进展,2003,33(1),65.13 Baskes M I. Physical Review B,1992,46(5),2727.14 Alder B J, Wainwright T E. Journal of Chemical Physics,1957,27(5),1208.15 Daw M S, Baskes M I. Physical Review Letters,1983,50(17),1285. 16 Sinclair J E. Philosophical Magazine A,1984,50(1),45.17 Pasianot R, Savino E J. Physical Review B,1992,45(22),12704.18 Baskes M I, Johnson R A. Modelling and Simulation in Materials Science and Engineering,1994,2(1),147.19 Liu X Y, Adams J B, Ercolessi F, et al. Modelling & Simulation in Materials Science and Engineering,1999,4(3),293. 20 Hu W, Zhang B, Huang B, et al. Journal of Physics Condensed Matter,2001,13(6),1193. 21 Lee B J, Baskes M I. Physical Review B,2000,62(13),8564.22 Lee B J. Acta Materialia,2006,54(3),701.23 Lee B J, Lee T H, Kim S J. Acta Materialia,2006,54(17),4597.24 Kim Y M, Shin Y H, Lee B J. Acta Materialia,2009,57(2),474.25 Kim H K, Jung W S, Lee B J. Acta Materialia,2009,57(11),3140.26 Dong W P, Chen Z, Lee B J. Transactions of Nonferrous Metals Society of China,2015,25(3),907.27 Choi W M, Kim Y, Seol D, et al. Computational Materials Science,2017,130,121.28 Kim Y M, Kim N J, Lee B J. Calphad,2009,33(4),650.29 Kim Y M, Jung I H, Lee B J. Modelling and Simulation in Materials Science and Engineering,2012,20(3),035005.30 Kim K H, Jeon J B, Lee B J. Calphad,2015,48,27.31 Kim K H, Lee B J. Calphad,2017,57,55.32 Jang H S, Kim K M, Lee B J. Calphad-computer Coupling of Phase Diagrams & Thermochemistry,2018,60,200. 33 Zu Q, Guo Y F, Tang X Z. Acta Metallurgica Sinica,2015,28(7),876.34 Tang X Z, Guo Y F, Xu S, et al. Philosophical Magazine,2015,95(19),2013.35 Wu Z, Curtin W A. Nature,2015,526(7571),62.36 Wu Z, Yin B, Curtin W A. Acta Materialia,2016,119,203.37 Fan H, Wang Q, Tian X, et al. Scripta Materialia,2017,127,68.38 Kim K H, Hwang J H, Jang H S, et al. Materials Science and Enginee-ring: A,2018,715,266.39 Uranagase M, Matsumoto R. Computational Materials Science,2016,113,143.40 Matsunaka D, Ohnishi Y, Shibutani Y. Materials Transactions,2013,54(11),2093.41 Zu Q, Guo Y F, Tang X Z. Chinese Journal of Computational Mechanics,2013,30(s1),50(in Chinese).俎群,郭雅芳,汤笑之.计算力学学报,2013,30(s1),50.42 Qi H G, Guo Y F. Chinese Journal of Computational Mechanics,2008,25(s1),72(in Chinese).亓宏刚,郭雅芳.计算力学学报,2008,25(s1),72.43 Song H Y, Li Y L. Acta Physica Sinica,2012,62(22),226201(in Chinese).宋海洋,李玉龙.物理学报,2012,61(22),226201.44 Xu S, Su Y, Chavoshi S Z. Materials Research Express,2018,5(1),016523.45 Fan H, Elawady J A. Journal of Applied Mechanics,2015,82(10),101006.46 Zu Q, Guo Y F, Xu S, et al. Acta Metallurgica Sinica (English Letters),2016,29(3),301.47 Jahanshahi M, Khoei A R, Heidarzadeh N, et al. Computational Mate-rials Science,2018,141,360.48 Aghababaei R, Joshi S P. Acta Materialia,2014,69,326.49 Dou Y C. A fundamental study on strengthening and toughening of magnesium alloys based on first-principle and molecular dynamics methods. Ph.D. Thesis, Chongqing University, China,2015(in Chinese).豆雨辰.基于第一性原理和分子动力学的镁合金强韧化基础研究.博士学位论文,重庆大学,2015.50 Luque A, Ghazisaeidi M, Curtin W A. Acta Materialia,2014,81,442.51 Xu H L, Su X M, Yuan G Y, et al. Transactions of Nonferrous Metals Society of China,2014,24(12),3804.52 Rawat S, Joshi S P. Materials Science and Engineering: A,2016,659,256.53 Zu Q, Tang X Z, Xu S, et al. Acta Materialia,2017,130,310.54 Mei H, Xu S, Liu L, et al. Materials Research Express,2018,5(2),026513.55 Wang J, Beyerlein I J. Metallurgical and Materials Transactions A,2012,43(10),3556.56 Bhatia M A, Mathaudhu S N, Solanki K N. Acta Materialia,2015,99,382.57 Somekawa H, Mukai T. Computational Materials Science,2013,77,424.58 Wang J, Beyerlein I J, Tomé C N. International Journal of Plasticity,2014,56,156.59 Li B, Liao M, Ma Q, et al. Computational Materials Science,2015,101,175.60 Tang S, Zhang G, Zhou N, et al. International Journal of Plasticity,2017,95,82.61 Zhou Y X, Song H Y, An M R. Ordnance Material Science and Enginee-ring,2014(1),8(in Chinese).周彦雄,宋海洋,安敏荣.兵器材料科学与工程,2014(1),8.62 Wang C, Song H Y, An M R. Acta Physica Sinica,2014,63(4),046201(in Chinese).王琛,宋海洋,安敏荣.物理学报,2014,63(4),046201.63 Barrett C D, Imandoust A, Kadiri H E. Scripta Materialia,2018,146,46.64 Peng Y, Cammarata R C, Falk M L. Acta Materialia,2016,105,378.65 Peng Y, Cammarata R C, Falk M L. Modelling and Simulation in Mate-rials Science and Engineering,2017,25(8),085001.66 Liao M, Li B, Horstemeyer M F. Computational Materials Science,2013,79(8),534.67 Liao M, Li B, Horstemeyer M F. Metallurgical & Materials Transactions A,2014,45(8),3661.68 Kim K H, Jeon J B, Kim N J, et al. Scripta Materialia,2015,108,104.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[3] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[4] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[5] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[6] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[7] 时博, 王金辉, 魏福安. 金属玻璃自由体积理论的研究概述[J]. 材料导报, 2019, 33(7): 1221-1226.
[8] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[9] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[10] 黄晓锋, 张乔乔, 马亚杰, 魏浪浪, 杨剑桥. Mg-6Zn-1Cu-0.3Mn镁合金的半固态组织演变[J]. 材料导报, 2019, 33(20): 3441-3447.
[11] 贾森森, 王永彪, 肖艳秋, 吴玉娟, 彭立明, 刘建秀, 刘新田. 镁合金微观组织的相场法模拟进展[J]. 材料导报, 2019, 33(19): 3306-3312.
[12] 聂豫晋, 戴建伟, 章晓波. Mg-3Gd-1Zn合金在模拟体液中的腐蚀与磨损协同作用[J]. 材料导报, 2019, 33(18): 3057-3061.
[13] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[14] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[15] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed