Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3057-3061    https://doi.org/10.11896/cldb.18080165
  金属与金属基复合材料 |
Mg-3Gd-1Zn合金在模拟体液中的腐蚀与磨损协同作用
聂豫晋1, 2, 戴建伟1, 2, 章晓波1, 2,
1 南京工程学院材料科学与工程学院,南京 211167
2 江苏省先进结构材料与应用技术重点实验室,南京 211167
Synergistic Effects of Corrosion and Wear Resistance of Mg-3Gd-1Zn Alloy in Simulated Body Fluid
NIE Yujin1,2, DAI Jianwei1,2, ZHANG Xiaobo1,2
1 School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167
2 Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167
下载:  全 文 ( PDF ) ( 3949KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 对Mg-3Gd-1Zn(质量分数,%)生物镁合金进行了不同温度的固溶处理,然后进行时效处理。采用失重法测试了合金的腐蚀性能;利用摩擦磨损试验机评价了合金在模拟体液(SBF)中的摩擦磨损行为,将腐蚀与磨损各自导致的质量损失定量分开,并与单一SBF条件下的腐蚀速率和干摩擦条件下的磨损率进行对比。结果表明:随着固溶温度的升高,共晶相逐渐减少,晶粒尺寸增大,合金的硬度逐渐增大,腐蚀速率先降低后有所升高。合金在SBF中的摩擦系数为干摩擦条件下的33%~55%,体积磨损率仅为干摩擦条件下的1.3%~1.5%。磨损明显加速腐蚀的发生,不同状态合金在伴有摩擦磨损的SBF中的腐蚀速率是单纯在SBF中浸泡腐蚀速率的11~19倍。在SBF中,摩擦磨损加速了合金的腐蚀,而SBF介质有效抑制了合金的磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂豫晋
戴建伟
章晓波
关键词:  生物材料  镁合金  热处理  腐蚀  摩擦磨损    
Abstract: The Mg-3Gd-1Zn alloy was performed by solution treated at different temperatures and then aged. The corrosion behavior of alloys was tested by mass loss,the friction and wear properties in simulated body fluid (SBF) were evaluated by friction and wear tester, and the mass loss caused by corrosion and wear was quantitatively evaluated. The corrosion rate of the alloy in SBF accompanied with wear was compared with that without wear, and the wear behavior of the alloy in SBF was also compared with that under dry sliding condition. The results showed that the eutectic phase decreased, the grain size increased, the hardness increased slightly, and the corrosion rate decreased first and then increased with the increase of solution temperature. The friction coefficient in SBF with wear was about 33%—55% of that under dry sliding condition. The wear rate in SBF was 1.3%—1.5% of that under dry sliding condition. The wear would obviously accelerate the corrosion rate. The corrosion rate of alloy in SBF with wear under different conditions was 11—19 times of that without wear. In general, the corrosion rate was increased significantly due to wear, and wear was obviously impeded by SBF.
Key words:  biomaterial    magnesium alloy    heat treatment    corrosion    friction and wear
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TG146.2  
基金资助: 江苏省优秀青年基金(BK20160081);江苏省高等学校自然科学研究重大项目(18KJA430008);江苏省“333工程”项目(BRA2018338);
通讯作者:  xbxbzhang2003@163.com   
作者简介:  聂豫晋,2016年6月毕业于南京工程学院,获得学士学位。2017年9月在南京工程学院读研究生,主要从事生物医用镁合金的性能研究。
章晓波,南京工程学院材料科学与工程学院,教授。2009年于上海交通大学从事博士后研究工作, 主要研究可降解医用镁合金材料;2011年于南京工程学院材料学院从事教学科研工作,主要研究方向为镁合金。目前,以第一作者或通讯作者在国内外期刊上发表SCI或EI收录论文50余篇。以第一发明人身份授权发明专利6件。
引用本文:    
聂豫晋, 戴建伟, 章晓波. Mg-3Gd-1Zn合金在模拟体液中的腐蚀与磨损协同作用[J]. 材料导报, 2019, 33(18): 3057-3061.
NIE Yujin, DAI Jianwei, ZHANG Xiaobo. Synergistic Effects of Corrosion and Wear Resistance of Mg-3Gd-1Zn Alloy in Simulated Body Fluid. Materials Reports, 2019, 33(18): 3057-3061.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080165  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3057
[1] Zhang X B, Mao L, Yuan G Y, et al. Rare Metal Materials and Engineering, 2013, 42(6), 1300(in Chinese).章晓波, 毛琳, 袁广银, 等. 稀有金属材料与工程, 2013, 42(6), 1300.
[2] Li N, Zheng Y F. Journal of Materials Science and Technology, 2013, 29(6),489.
[3] Sun Y, Zhang W X, Xu C X, et al. Materials Review B:Research Papers, 2017, 31(12), 105(in Chinese).孙毅, 张文鑫, 许春香, 等. 材料导报:研究篇, 2017, 31(12), 105.
[4] Zhao D W, Witte F, Lu F Q, et al. Biomaterials, 2017, 112, 287.
[5] Bse D, Eggebrecht H, Haude M, et al. American Heart Hospital Journal, 2006, 4(2), 128.
[6] Bakhsheshi-Rad H R, Hamzah E, Tok H Y, et al. Journal of Materials Engineering and Performance, 2017, 26(2), 653.
[7] Li F, Wang A M, Wang C T. Tribology, 2016, 36(1), 42(in Chinese).李锋, 王安敏, 王成焘. 摩擦学学报, 2016, 36(1), 42.
[8] Jie F X, He X M, Lv Y M, et al. Materials Review A:Review Papers, 2016, 30(4), 109(in Chinese).颉芳霞, 何雪明, 吕彦明, 等. 材料导报:综述篇, 2016, 30(4), 109.
[9] Fellah M, Labaz M, Assala O, et al. Tribology, 2013, 7(3), 135.
[10] Attar H, Prashanth K G, Chaubey A K, et al. Materials Letters, 2015, 142(1), 38.
[11] Choubey A, Basu B, Balasubramaniam R. Materials Science and Engineering A, 2004, 379(1-2), 234.
[12] Li H, Liu D B, Zhao Y, et al. Journal of Materials Engineering and Performance, 2016, 25(9), 3890.
[13] Dai J W, Zhang X B, Yin Q, et al. Journal of Magnesium and Alloys, 2017, 5(4), 448.
[14] Zhao L, Chen W, Dai J W, et al. Journal of Materials Engineering and Performance, 2017, 26(11), 5501.
[15] Zhang X B, Dai J W, Yang H Y, et al. Materials Technology, 2017, 32(7), 399.
[16] Zhang J, Zhang X B, Liu Q H, et al. Journal of Materials Science and Technology, 2017, 33(7), 645.
[17] Dai X M, Zhu X L, Zhang R Q. College Mathematics, 2016, 32(2), 100(in Chinese).戴习民, 朱晓临, 张仁琼. 大学数学, 2016, 32(2), 100.
[18] Sun Y, Zhang W X, Xu C X, et al. Transactions of Materials and Heat Treatment, 2017, 38(9), 24(in Chinese).孙毅, 张文鑫, 许春香, 等. 材料热处理学报, 2017, 38(9), 24.
[19] Zhang F, Bi G L, Li Y D, et al. Transactions of Materials and Heat Treatment, 2015, 36(4), 85(in Chinese).张帆, 毕广利, 李元东, 等. 材料热处理学报, 2015, 36(4), 85.
[20] Liu Y, Jin B, Shao S, et al. Tribology Transactions, 2014, 57(2), 275.
[21] Labib F, Ghasemi H M, Mahmudi R. Wear, 2016, 348-349, 69.
[22] Zafari A, Ghasemi H M, Mahmudi R. Wear, 2012, 292-293(15), 33.
[23] López A J, Rodrigo P, Torres B, et al. Wear, 2011, 271(11), 2836.
[24] Zong Y, Yuan G Y, Zhang X B, et al. Materials Science and Engineering B, 2012, 177(5), 395.
[1] 陈灵芝, 周张健, CarstenSchroer. 铅冷能源系统中液态金属与铁基合金相容性的研究进展[J]. 材料导报, 2020, 34(5): 5096-5101.
[2] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[3] 马潇磊, 张成成, 张朝磊, 马晓艺, 赵海东, 方文. 基于“混杂”设计的索氏体新型不锈钢的组织和性能[J]. 材料导报, 2020, 34(4): 4103-4107.
[4] 黄海亮, 陈跃良, 张勇, 卞贵学, 王晨光, 吴省均. 飞机多金属耦合在溶液状态与大气状态下的腐蚀行为对比及当量折算研究[J]. 材料导报, 2020, 34(4): 4118-4125.
[5] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[6] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[7] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[8] 雷意, 严红革, 陈吉华, 夏伟军, 苏斌, 丁天, 黄文森. 温度对ZK60镁合金细晶板材成形性能的影响[J]. 材料导报, 2020, 34(2): 2067-2071.
[9] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[10] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[11] 曾德鹏, 余森, 王岚, 于振涛, 刘印, 盖晋阳, 代晓军. 医用金属材料表面自身纳米化研究进展[J]. 材料导报, 2019, 33(Z2): 343-347.
[12] 吕菲, 田原, 宋晶, 杨春颖, 刘雪松. 化学腐蚀工艺对锗单晶片机械强度的影响[J]. 材料导报, 2019, 33(Z2): 428-430.
[13] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[14] 孙明娟, 刘光烜, 张淑媛, 李雪. 耐腐蚀吸波超材料的制备及应用[J]. 材料导报, 2019, 33(Z2): 613-616.
[15] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed