Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3165-3171    https://doi.org/10.11896/cldb.19010174
  金属与金属基复合材料 |
Fe基纳米晶软磁合金退火脆性的研究进展
张国忠,李艳辉,吴立成,张伟
大连理工大学材料科学与工程学院,辽宁省凝固控制与数字化制备技术重点实验室,大连 116024
Research Progress on Annealing Embrittlement of Fe-based Nanocrystalline Soft Magnetic Alloys
ZHANG Guozhong,LI Yanhui,WU Licheng,ZHANG Wei
Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province),School of Materials Science and Engineering,Dalian University of Technology,Dalian 116024,China
下载:  全 文 ( PDF ) ( 19589KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Fe基纳米晶软磁合金自1988年被发现以来,因其低矫顽力、高磁导率、低铁损、低磁致伸缩系数等优异特性,尤其是高频下突出的软磁性能一直受到广泛的关注;其中,Finemet合金已作为高频变压器等设备的铁心材料在工业生产中得到了应用。近年来,一系列高饱和磁感应强度的新型纳米晶软磁合金的研发,将进一步促进电子、电力设备的小型化和节能化。Fe基纳米晶软磁合金通常是由其前驱体非晶带材经退火处理结晶化制备获得。在热处理过程中带材会产生脆性,这不仅增加了铁心加工成形的难度,也使得铁心在实际工况下易失效,严重制约了其在工业生产中的广泛应用。因此,材料工作者对其退火脆性问题展开了研究,并取得了一系列成果。Fe基纳米晶软磁合金的退火脆化产生可分为两个阶段,即非晶前驱体在低于初始结晶化温度下退火导致结构弛豫引起的韧-脆性转变,以及结晶化后由α-Fe相析出引起的合金脆性增加。目前,评价带材的韧-脆性主要采用相对断裂应变(Relative strain at fracture, εf)和临界应力强度因子(KQ)这两个参量。虽然εf值的离散性较大,但由于测定方法简便且能够定量地反映合金的脆化程度而被广泛应用于带材退火脆性的研究。通常合金的退火脆性随α-Fe相体积分数的增加而增大,而细化α-Fe晶粒则有利于抑制合金的退火脆性倾向。当合金中α-Fe相体积分数在70%以下时,合金的硬度随α-Fe相体积分数的增加呈线性增长,此时硬度也可以间接地反映合金脆化的程度。添加合金元素、优化热处理工艺以及采用新型热处理方法等均可以细化纳米晶合金的组织结构,从而在一定程度上抑制其退火脆性倾向。本文综述了近年来有关Fe基纳米晶软磁合金的退火脆化机制、韧-脆性评价方法,分析了合金成分、热处理工艺、组织结构、退火脆性间的关系,总结了抑制退火脆性的途径等方面的研究进展,并对存在的问题和今后的研究方向进行了探讨。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张国忠
李艳辉
吴立成
张伟
关键词:  Fe基纳米晶软磁合金  退火脆性  非晶合金  热处理工艺  组织结构    
Abstract: Since Fe-based nanocrystalline soft magnetic alloys were discovered in 1988, they have attracted increasing attention due to the excellent properties including low coercivity, high permeability, low core loss, low magnetostriction coefficient, and especially outstanding soft magnetic properties in high frequency. Among them, Finemet alloys have been widely used as core materials in high-frequency transformer and other devices. In recent years, a series of new nanocrystalline soft magnetic alloys with high saturation magnetic flux density have been developed, which will promote the miniaturization and energy saving of the power and electronic equipment.
The Fe-based nanocrystalline soft magnetic alloys are usually fabricated by annealing the amorphous ribbons. During annealing, the ribbons become brittle, which increases the difficulty to the processing and forming of the iron cores, and also causes the devices prone to failure in service, hence restricting their extensive applications in industry. Therefore, plenty of work on the annealing embrittlement of the alloys have been conducted, and a series of progress has been made.
The process of the annealing embrittlement of the Fe-based nanocrystalline alloys includes two stages, i.e., the ductile-to-brittle transition due to the structural relaxation of the amorphous precursor annealed below the primary crystallization temperature, and the further increase in the brittleness caused by the precipitation of α-Fe phase after crystallization. The relative strain at fracture (εf) and critical stress intensity factor (KQ) are commonly adopted to evaluate the brittle degree of the alloy ribbons. The εf is mainly employed to study the annealing embrittlement of the ribbons because it can quantitatively characterize the degree of the brittleness, and the test is simple, although the εf values are discrete to a certain degree. The increase in the volume fraction of the α-Fe phase usually aggravates the annealing embrittlement, while refining the α-Fe grain is beneficial to restrain the embrittlement. The hardness of the alloys rises linearly with increasing the volume fraction of the α-Fe phase when the volume fraction is below 70%. In this case, the hardness can also indirectly reflect the degree of the embrittlement. Alloying appropriate element, optimizing annealing process and/or adopting new heat treatment methods can refine the microstructure of nanocrystalline alloys, and to some extent, suppress the tendency of the annealing embrittlement.
In this paper, the research progress in the mechanism and evaluation methods for the annealing embrittlement of the Fe-based nanocrystalline soft magnetic alloys, the correlation among the alloy composition, heat treatment process, microstructure and annealing embrittlement, together with the approaches for inhibiting the annealing embrittlement has been reviewed. In addition, the problems and the orientations of the research on the annealing embrittlement have been discussed as well.
Key words:  Fe-based nanocrystalline soft magnetic alloys    annealing embrittlement    amorphous alloys    heat treatment process    microstructure
                    发布日期:  2020-01-03
ZTFLH:  TG132.2+71  
基金资助: 国家重点研发计划项目(2017YFB0903903);国家自然科学基金面上项目(51571047;51771039)
通讯作者:  wzhang@dlut.edu.cn   
作者简介:  张伟,大连理工大学材料科学与工程学院教授、博士研究生导师。1983年毕业于大连理工大学金属材料专业,1986年在同大学获铸造专业硕士学位;1998年在日本东北大学获材料加工学博士学位,1998—2004年任日本科技技术振兴机构研究员;2004—2017年任日本东北大学金属材料研究所副教授、客座教授; 2011年任现职。主要研究领域为非晶态合金及其复合材料,纳米合金及磁性材料。已发表SCI收录论文250余篇,被引用7000多次(H 因子43);合著专著5部;获国内外发明专利20多项。
引用本文:    
张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
ZHANG Guozhong,LI Yanhui,WU Licheng,ZHANG Wei. Research Progress on Annealing Embrittlement of Fe-based Nanocrystalline Soft Magnetic Alloys. Materials Reports, 2020, 34(3): 3165-3171.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010174  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3165
1 Yoshizawa Y, Oguma S, Yamauchi K.Journal of Applied Physics, 1988, 64(10),6044.
2 Petzold J.Journal of Magnetism and Magnetic Materials, 2002, 242-245, 84.
3 Li Z Y, Chen X W, Zhang D F.Metallic Functional Materials, 2007, 87(9), 7091 (in Chinese).
李志勇, 陈孝文, 张德芬.金属功能材料, 2007, 87(9),7091.
4 Wang J T, Li J Q, Wang H J. Materials Science Forum, 2011, 694, 341.
5 Suzuki K, Makino A, Inoue A, et al.Journal of Applied Physics, 1991, 70(10), 6232.
6 Willard M A, Laughlin D E, Mchenry M E, et al. Journal of Applied Physics, 1998, 84(12), 6773.
7 Ohta M, Yoshizawa Y.Japanese Journal of Applied Physics, 2007, 46(20), 477.
8 Makino A, Men H, Kubota T, et al.Materials Transactions, 2009, 50(1), 204.
9 Ji S, Qian K M, Zhang Y S, et al.Ordnance Material Science and Engineering, 2005, 28(5), 51 (in Chinese).
纪松, 钱坤名, 张延松,等. 兵器材料科学与工程, 2005, 28(5), 51.
10 Mitra A, Panda A K, Rao V, et al.Applied Surface Science, 2001, 182(3-4), 321.
11 Miao X F, Wang Y G.Journals of Materials Science, 2012, 47(4),1745.
12 Herzer G.Journal of Magnetism and Magnetic Materials, 2005, 294(2), 99.
13 Li Y H, Jia X J, Xu Y Q, et al.Journal of Alloys and Compounds, 2017, 722, 859.
14 Ren X C, Li Y H, Jia X J, et al.Journal of Iron and Steel Research International, 2018, 25(6),614.
15 Lu Y P, Hu S K, Cao X G.Development and Application of Materials, 1995, 10(4), 41 (in Chinese).
鲁彦平, 胡素坤, 曹兴国.材料开发与应用, 1995, 10(4), 41.
16 Luborsky F E, Walter J L.Journal of Applied Physics, 1976, 47(8), 3648.
17 Daniil M, Ohodnicki P R, McHenry M E, et al. Philosophical Magazine, 2010, 90(12), 1547.
18 Minnert C, Kuhnt M, Bruns S, et al.Materials and Design, 2018, 156, 252.
19 Ovid'ko I A, Sheinerman A G. Acta Materialia, 2010, 58(16), 5286.
20 Xiao Y, Zhang L, Du S L, et al. Metallic Functional Materials, 2017, 24(6), 5 (in Chinese).
肖阳, 张磊, 杜帅龙,等. 金属功能材料, 2017, 24(6),5.
21 Komatsu T, Matusita K, Yokota R.Journal of Materials Science, 1985, 20(4), 1375.
22 Wu T W, Spaepen F.Philosophical Magazine B, 1990, 61(4),739.
23 Gerling R, Schimansky F P, Wagner R. Acta Metallurgica, 1988, 36(3), 575.
24 Kumar G, Ohnuma M, Furubayashi T, et al.Journal of Non-Crystalline Solids, 2008, 354(10-11), 882.
25 Gan Y, Zhou B L.Acta Metallurgica Sinica, 2001, 34(4), 391 (in Chinese).
甘阳, 周本濂.金属学报, 2001, 34(4), 391.
26 Gan Y, Zhou B L.Acta Metallurgica Sinica, 2000, 36(4), 356 (in Chinese).
甘阳, 周本濂.金属学报, 2000, 36(4), 356.
27 Sun Y Y, Song M, Liao X Z, et al.Materials Science and Engineering A, 2012, 543, 145.
28 Lashgari H R, Chen Z, Liao X Z, et al. Materials Science and Engineering A, 2015, 626, 480.
29 Shurygina N A, Glezer A M, Permyakova I E, et al.Bulletin of the Russian Academy of Sciences Physics, 2012, 76(1), 44.
30 Um C Y, Johnson F, Simone M, et al. Journal of Applied Physics, 2005, 97(10), 2946.
31 Gavrilovic A, Rafailovic L D, Minic D M, et al. Journal of Alloys and Compounds, 2011, 509(6), S119.
32 Sun W S, Quan M X.Materials Letters, 1996, 27(3), 101.
33 Gavrilovic A, Minic D M, Rafailovic L D, et al. Journal of Alloys and Compounds, 2010, 204(2), 463.
34 Škorvánek I, Švec P, Grenche J, et al. Journal of Physics Condensed Matter, 2002, 14(18), 4717.
35 Turcanová J, Marcin J, Kovác J, et al. Journal of Physics: Conference Series, 2009, 144, 012065.
36 Farkas D, Hyde B. Nano Letters, 2005, 5(12), 2403.
37 Yang F,Yang W. Journal of the Mechanic and Physics of Solids, 2009, 57(2), 305.
38 Heil T M, Wahl K J, Lewis A C, et al.Applied Physics Letters, 2007, 90(21), 291.
39 Xu G Q, Zhang Y Z, Jin H J.Metallic Functional Materials, 1995, 2(6), 231 (in Chinese).
许桂琴, 张延忠, 金慧娟.金属功能材料, 1995, 2(6), 231.
40 Hubac L, Novák L, Balla S, et al. Acta Physica Polonica, 2017, 131(4), 672.
41 Qiu S B, Zhang C Y, Yao K F. Acta Metallurgica Sinica, 2007, 43(1), 91 (in Chinese).
邱胜宝, 张程煜, 姚可夫.金属学报, 2007, 43(1), 91.
42 Chiriac H, Hison C. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 475.
43 Chiriac H, Hison C, Neagu M.Journal of Optoelectronics and Advanced Materials, 2000, 2(4), 407.
44 Allia P, Baricco M, Knobel M, et al.Journal of Magnetism and Magnetic Materials, 1994, 133(13), 243.
45 Hison C L, Chiriac H, Lupu N.Sensors and Actuators A Physical, 2006, 129(1), 45.
46 张伟, 李艳辉, 张国忠,等. 中国专利, 201811310628.6, 2018.
[1] 丁华平,龚攀,姚可夫,邓磊,金俊松,王新云. 非晶合金零件成形技术研究进展[J]. 材料导报, 2020, 34(3): 3133-3141.
[2] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[3] 陈爱华, 俞坚钢, 陈国平, 唐诤溱, 王鹏举. 合金化元素对铜基块状非晶合金性能影响的研究进展[J]. 材料导报, 2019, 33(Z2): 415-418.
[4] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[5] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[6] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[7] 张鹏飞, 徐盼盼, 于仁红, 贾德昌, 杨治华. 2Si-B-3C-N陶瓷的热压烧结工艺[J]. 材料导报, 2019, 33(18): 3161-3165.
[8] 周杰, 李克, 王彪, 艾凡荣. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响[J]. 材料导报, 2019, 33(1): 73-77.
[9] 赵燕春,许丛郁,袁小鹏,何旌,寇生中,李春燕,袁子洲. 块体非晶合金韧塑性研究现状[J]. 《材料导报》期刊社, 2018, 32(3): 467-472.
[10] 付正容,王修昌,金青林,谭军. 多孔非晶合金及其复合材料的制备技术研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 473-482.
[11] 洪凯, 吴林, 蒋伟, 吴继礼, 张博. Cu-Zr非晶合金薄带的高温拉伸蠕变研究[J]. 材料导报, 2018, 32(24): 4309-4313.
[12] 黄硕文, 黄春平, 吴中文, 夏春, 刘奋成, 柯黎明. 后热处理对搅拌摩擦加工制备Al-Ti复合材料组织特征的影响[J]. 材料导报, 2018, 32(22): 3908-3912.
[13] 黄飞, 康嘉杰, 岳文, 付志强, 朱丽娜, 王成彪. 超音速火焰喷涂制备铁基非晶合金涂层的研究现状[J]. 材料导报, 2018, 32(21): 3789-3795.
[14] 郑继波, 李雪, 卢公昊, 宁佳林, 黎曦宁. 脱合金法制备Fe基纳米多孔材料及其催化性能[J]. 材料导报, 2018, 32(16): 2828-2831.
[15] 董善亮,霍思嘉,甄淑颖,张宇民,王玉金. 烧结温度对反应热压烧结制备ZrB2-ZrC-W2Zr复合材料组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 1994-1997.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed