Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 1994-1997    https://doi.org/10.11896/j.issn.1005-023X.2018.12.010
  材料研究 |
烧结温度对反应热压烧结制备ZrB2-ZrC-W2Zr复合材料组织和力学性能的影响
董善亮1,霍思嘉2,甄淑颖2,张宇民1,王玉金2
1 哈尔滨工业大学复合材料与结构研究所,哈尔滨 150080;
2 哈尔滨工业大学材料科学与工程学院, 特种陶瓷研究所,哈尔滨 150080
Effect of Sintering Temperature on Microstructure and Mechanical Properties of ZrB2-ZrC-W2Zr Composites Prepared by Reactive Hot-pressing Method
DONG Shanliang1, HUO Sijia2, ZHEN Shuying2, ZHANG Yumin1, WANG Yujin2
1 Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150080;
2 Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080
下载:  全 文 ( PDF ) ( 1924KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以B4C、Zr、W为原料,采用反应热压烧结工艺制备了ZrB2-ZrC-W2Zr复合材料,系统研究了烧结温度对复合材料组织结构和力学性能的影响规律。结果表明,复合材料主要由ZrB2、ZrC、W2Zr和少量的W组成,随着烧结温度从1 600 ℃升高到1 900 ℃,W的含量略有增加,W2Zr的含量略有减少,ZrB2晶粒的形态由针状向板条状转变,晶粒尺寸逐渐增大,而长径比逐渐减小。复合材料的抗弯强度和断裂韧性随着烧结温度的升高先增大后减小,在1 850 ℃出现峰值,分别达到约560 MPa和5.5 MPa·m1/2。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董善亮
霍思嘉
甄淑颖
张宇民
王玉金
关键词:  ZrB2-ZrC-W2Zr复合材料  反应热压烧结  烧结温度  组织结构  力学性能    
Abstract: ZrB2-ZrC-W2Zr composites were fabricated by reactive hot-pressing method via chemical reaction of B4C, Zr and W powders. The effect of sintering temperature on the microstructure and mechanical properties of the composites was investigated. As a result, the composites were composed of ZrB2, ZrC, W2Zr and a spot of W phase. With the sintering temperature increased from 1 600 ℃ to 1 900 ℃, the content of W increased slightly while W2Zr slightly reduced, the morphology of ZrB2 led to a change of needle-like to lath-like, the average size of grains increased while the aspect ratio decreased. The flexural strength and fracture toughness firstly increased and then decreased depending on the sintering temperature. The maximum values of 560 MPa and 5.5 MPa·m1/2 were reached at 1 850 ℃.
Key words:  ZrB2-ZrC-W2Zr composite    reactive hot-pressing sintering    sintering temperature    microstructure    mechanical properties
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TQ174.5  
基金资助: 国家自然科学基金(51472060;51532006)
作者简介:  董善亮:男,1986年生,博士研究生,研究方向为反应热压烧结 E-mail:dongshanliang@hit.edu.cn 王玉金:通信作者,男,1974年生,博士,教授,研究方向为超高温材料 E-mail:wangyuj@hit.edu.cn
引用本文:    
董善亮,霍思嘉,甄淑颖,张宇民,王玉金. 烧结温度对反应热压烧结制备ZrB2-ZrC-W2Zr复合材料组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 1994-1997.
DONG Shanliang, HUO Sijia, ZHEN Shuying, ZHANG Yumin, WANG Yujin. Effect of Sintering Temperature on Microstructure and Mechanical Properties of ZrB2-ZrC-W2Zr Composites Prepared by Reactive Hot-pressing Method. Materials Reports, 2018, 32(12): 1994-1997.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.010  或          http://www.mater-rep.com/CN/Y2018/V32/I12/1994
1 Lanin A G, Marchev E V, Pritchin S A. Non-isothermal sintering parameters and their influence on the structure and properties of zirconium carbide[J]. Ceramics International,1991,17(5):301.
2 Tripp W C, Davis H H, Graham H C. Effect of an SiC addition on the oxidation of ZrB2[J]. American Ceramic Society Bulletin,1973,52(8):612.
3 Sakai K. Some characteristics and applications of ZrB2 composite ceramics[J]. Journal of the Ceramic of Japan,1989,24:526.
4 Chen L, Wang Y J, Cui L, et al. Inhibiting effect of additives on formation of ZrC phase in ZrB2-BN Composites by reactive hot pres-sing[J]. Journal of the American Ceramic Society,2012,95(11):3374.
5 Sorrell C C, Beratan H R, Bradt R C, et al. Directional solidification of (Ti, Zr) carbide-(Ti, Zr) diboride eutectics[J]. Journal of the American Ceramic Society,1984,67(3):190.
6 Zhao L Y, Jia D C, Wang Y J, et al. ZrC-ZrB2 matrix composites with enhanced toughness prepared by reactive hot pressing[J]. Scripta Materialia,2010,63(8):887.
7 Xu L, Huang C, Liu H, et al. In situ synthesis of ZrB2-ZrCx cera-mic tool materials toughened by elongated ZrB2 grains[J]. Materials & Design,2013,49(8):226.
8 Zhang T Q, Wang Y J, Zhou Y. Effect of temperature gradient in the disk during sintering on microstructure and mechanical properties of ZrCp/W composite[J]. International Journal of Refractory Metals & Hard Materials,2009,27(1):126.
9 王玉金. ZrCp/W复合材料的组织结构与抗热性能研究[D]. 哈尔滨:哈尔滨工业大学,2002:37.
10 Ken H, Takaya E, Masaka K, et al. Simultaneous synthesis and consolidation of W-added ZrB2 by pulsed electric current pressure sintering and their mechanical properties[J]. Materials Science Forum,2007,561(14):527.
11 Zhang S C, Hilmas G E, Fahrenholtz W G. Zirconium carbide-tungsten cermets prepared by in situ reaction sintering[J]. Journal of the American Ceramic Society,2007,90(6):1930.
12 Qu Q, Zhang X H, Meng S H, et al. Reactive hot pressing and sintering characterization of ZrB2-SiC-ZrC composites[J]. Materials Science & Engineering A,2008,491(1):117.
13 Zhang S, Wang S, Li W, et al. Mechanical properties of the low-temperature reactive melt infiltrated ZrB2-ZrC based composites[J]. Materials Letters,2012,78:81.
14 Wu W W, Zhang G J, Kan Y M, et al. Reactive hot pressing of ZrB2-SiC-ZrC ultra high temperature ceramics at 1 800 ℃[J]. Journal of the American Ceramic Society,2006,89(9):2967.
15 Qu Q, Han J C, Han W B, et al. In situ synthesis mechanism and characterization of ZrB2-ZrC-SiC ultra high-temperature ceramics[J]. Materials Chemistry and Physics,2008,110(2):216.
16 Opeka M M, Talmy I G, Wuchina E J, et al. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds[J]. Journal of the European Ceramic Society,1999,19(13):2405.
17 Monteverde F. Progress in the fabrication of ultra-high-temperature ceramics: “in situ” synthesis, microstructure and properties of a reactive hot-pressed HfB2-SiC composite[J]. Composite Science and Technology,2005,65(11):1869.
18 Chamberlain A L, Fahrenholtz W G, Hilmas G E. Low-temperature densification of zirconium diboride ceramics by reactive hot pressing[J]. Journal of the American Ceramic Society,2006,89(12):3638.
19 Gasch M, Ellerby D, Irby E, et al. Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics[J]. Journal of Materials Science,2004,39(19):5925.
20 Wang X G, Guo W M, Kan Y M, et al. Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives[J]. Journal of the European Ceramic Society,2011,31(6):1103.
21 Sara R V. The system zirconium-carbon[J]. Journal of the American Ceramic Society,1965,48(5):243.
22 Song G M, Wang Y J, Zhou Y. The mechanical and thermophysical properties of ZrC/W composites at elevated temperature[J]. Mate-rials Science & Engineering A,2002,334(1):223.
23 Liu H L, Ma H B, Zhang G J. Chemical process and solid solution formation in reactive hot presses ZrB2-SiC ceramics doped with W[J]. Advances in Applied Ceramics,2017,116(2):118.
24 Wu W W, Wang Z, Zhang G J, et al. ZrB2-MoSi2 composites tou-ghened by elongated ZrB2 grains via reactive hot pressing[J]. Scripta Materialia,2009,61(3):316.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed