Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3789-3795    https://doi.org/10.11896/j.issn.1005-023X.2018.21.016
  金属与金属基复合材料 |
超音速火焰喷涂制备铁基非晶合金涂层的研究现状
黄飞1, 康嘉杰1, 2, 3, 岳文1, 2, 付志强1, 2, 朱丽娜1, 2, 王成彪1, 2
1 中国地质大学(北京)工程技术学院,北京 100083;
2 深钻装备国际联合研究中心,北京 100083;
3 国土资源部深部地质钻探技术重点实验室,北京 100083
A State-of-the-art Review of Fe-based Amorphous Alloy Coatings Prepared by High-velocity Oxygen Fuel Spray Process
HUANG Fei1, KANG Jiajie1, 2, 3, YUE Wen1, 2, FU Zhiqiang1, 2, ZHU Lina1, 2, WANG Chengbiao1, 2
1 School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083;
2 National International Joint Research Center of Deep Geodrilling Equipment, Beijing 100083;
3 Key Laboratory of Deep Geodrilling Technology, Ministry of Land and Resources, Beijing 100083
下载:  全 文 ( PDF ) ( 1793KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 非晶合金的短程有序,长程无序和不存在晶界、位错等晶体缺陷等特点,使其具有较高的强度以及优异的防腐耐磨性能,从而成为一种具有广阔应用前景的新型金属材料。
然而,由于非晶合金体系本身非晶形成能力和制备技术的限制,目前难以得到具有工程意义的大尺寸块体结构材料。为了充分利用其优异的性能和扩大其应用领域,众多学者对制备非晶合金涂层展开了广泛研究。以超音速火焰喷涂为代表的热喷涂技术由于具有加工工艺简单、热输入低、喷涂材料范围大、制备的涂层耐磨耐蚀性能好等优势成为了制备非晶合金的重要方式。目前,利用超音速火焰喷涂技术制备的非晶合金涂层主要有Fe基、Ni基和Mo基等。而在众多的非晶体系中,Fe基非晶合金涂层由于其优异的性能和低廉的成本受到了广泛关注。研究者们发现,制备性能优异的Fe基非晶合金涂层不仅需要合适的制备方法,同时合金系成分的合理选择以及制备过程中工艺参数的优化能够完善非晶合金本身的优良特性,保证非晶合金具有更好的非晶形成能力并提高涂层的质量及使用性能。
目前,通过超音速火焰喷涂的涂层孔隙度通常低于2%,在使用改进型空气超音速火焰喷涂系统后可以将涂层的孔隙度降低到0.3%以内,使得涂层更致密,减少涂层浸泡在腐蚀介质中由于孔隙造成的涂层破坏,延长涂层的使用寿命。另外,在深共晶规律、电子密度规律、热力学规律等经验规律的指导下,研究者们开发了很多成分多元的Fe基合金体系,使得制备的非晶合金涂层在耐磨耐蚀等性能上都有很大提升,例如七元合金体系中的Fe40Cu8Cr15Mo14C15B6Y2在干摩擦磨损实验中,磨损量仅为相同条件下45号钢的四分之一,说明其具有优异的耐磨性能;八元合金体系中的Fe63Cr8Mo3.5Ni5P10B4C4Si2.5在进行3.5%(质量分数)NaCl溶液的电化学腐蚀实验后,比相同条件下304不锈钢涂层表面的腐蚀坑更少、更小,拥有更好的抗腐蚀性能。
本文对超音速火焰喷涂Fe基非晶合金的研究现状进行了综述,归纳总结了合金化学成分和喷涂参数对Fe基非晶合金涂层摩擦学性能和耐蚀性能的影响。并对超音速火焰喷涂制备性能优异的Fe基非晶合金涂层的研究前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄飞
康嘉杰
岳文
付志强
朱丽娜
王成彪
关键词:  超音速火焰喷涂(HVOF)  铁基非晶合金涂层  抗腐蚀  磨损    
Abstract: Amorphous alloy features short-range order and long-range disorder of atomic arrangement, no crystal defects like grain boundaries or dislocations, which ensure its superior performance of high strength, excellent corrosion and wear resistant compared to any other crystal materials. Therefore, amorphous alloy turns out to be an innovative metal material with wide application prospects.
Nevertheless, the limitations of the glass forming ability and preparation technologies of amorphous alloy systems make it difficult to obtain large-scale bulk structural materials for engineering applications. Aiming at taking full advantage of the excellent pro-perties and expanding the application range of amorphous alloys, extensive research efforts have been put into the preparation of amorphous alloy coatings. The thermal spraying technology represented by high velocity oxygen fuel has become the major method for preparing amorphous alloys, thanks to simple processing technology, low heat input, large range of spray materials, and good wear and corrosion resistance of the prepared coatings. At present, amorphous alloy coatings prepared by high velocity oxygen fuel technology mainly include Fe-based, Ni-based, Mo-based and other systems. Among these amorphous alloy systems, Fe-based amorphous alloy coatings have raised great concern due to their excellent properties and low cost. It has been found that achieving Fe-based amorphous alloy coatings with satisfactory properties requires not only appropriate preparation methods, but also reasonable selection of alloy compositions and optimization of process parameters, which can enhance the excellent properties of the amorphous alloys themselves, and further ensure the better amorphous forming ability, quality and performance of the coatings.
At present, the porosity of coatings prepared by high velocity oxygen fuel is usually less than 2%. The modified high velocity air fuel technology is able to reduce the porosity of the coating to less than 0.3%, and make the coatings denser. It will also reduce the damage caused by the corrosion of pores when immersed in the corrosive medium and prolong the service life of the coatings. Besides, with the guidance of deep eutectic law, electron density rule, thermodynamic laws and other empirical rules, the researchers have developed plenty of Fe-based alloy systems, which greatly improve the wear and corrosion resistance of the prepared amorphous alloy coating. For example, Fe40Cu8Cr15Mo14C15B6Y2, the seven-element alloy system, shows excellent wear resistance performance that it presents only 1/4 wear loss of the AISI 1045 steel under the same conditions in the dry friction wear test. The eight-element alloy system Fe63Cr8Mo3.5Ni5P10B4C4Si2.5 exhibits less and smaller corrosion pits compared to 304 stainless steel in the electrochemical corrosion test in 3.5wt% NaCl solution under the same conditions, showing better corrosion resistance performance.
In this article, a state-of-the-art review on Fe-based amorphous alloy coatings prepared by high velocity oxygen fuel technology is given. The effects of chemical composition and parameters of spraying processing on the wear and corrosion resistance performance of Fe-based amorphous alloy coatings are summarized. Meanwhile, the research prospects of Fe-based amorphous alloy coating with favorable performance prepared by high velocity oxygen fuel technology are also proposed.
Key words:  high velocity oxygen fuel (HVOF)    Fe-based amorphous alloy coating    corrosion resistance    wear
                    发布日期:  2018-11-21
ZTFLH:  TG178  
基金资助: 国家自然科学基金航天先进制造技术研究联合基金培育项目(U1537108); 国家自然科学基金面上项目(41772389); 北京市自然科学基金面上项目(3182032; 3172026)
作者简介:  黄飞:男,1992年生,硕士研究生,主要从事表面防护以及热喷涂的研究 E-mail:thomashuang1992@qq.com;康嘉杰:通信作者,男,1984年生,博士,副教授,硕士研究生导师,主要从事再制造工程、摩擦学和表面工程的研究 E-mail:kangjiajie@cugb.edu.cn
引用本文:    
黄飞, 康嘉杰, 岳文, 付志强, 朱丽娜, 王成彪. 超音速火焰喷涂制备铁基非晶合金涂层的研究现状[J]. 材料导报, 2018, 32(21): 3789-3795.
HUANG Fei, KANG Jiajie, YUE Wen, FU Zhiqiang, ZHU Lina, WANG Chengbiao. A State-of-the-art Review of Fe-based Amorphous Alloy Coatings Prepared by High-velocity Oxygen Fuel Spray Process. Materials Reports, 2018, 32(21): 3789-3795.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.016  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3789
1 Cai H T, Jiang T, Zhou Y.Research status and development of the thermal spray technology[J].Equipment Manufacturing Technology,2014(6):28(in Chinese).
蔡宏图,江涛,周勇.热喷涂技术的研究现状与发展趋势[J].装备制造技术,2014(6):28.
2 Zhang Y, Zhang X, Liu C H, et al.Development status of thermal spray technology and thermal spray materials[J].Equipment Environmental Engineering,2013(3):59(in Chinese).
张燕,张行,刘朝辉,等.热喷涂技术与热喷涂材料的发展现状[J].装备环境工程,2013(3):59.
3 Sordelet D J, Besser M F. Oxygen effects on glass formation of plasma arc sprayed Cu47Ti33Zr11Ni8Si1 surface coatings[J].Materials Science & Engineering A,2004,375-377(1):625.
4 Otsubo F, Era H, Kishitake K.Formation of amorphous Fe-Cr-Mo-8P-2C coatings by the high velocity oxy-fuel process[J].Journal of Thermal Spray Technology,2000,9(4):494.
5 Varadaraajan V, Guduru R K, Mohanty P S.Synthesis and microstructural evolution of amorphous/nanocrystalline steel coatings by different thermal-spray processes[J].Journal of Thermal Spray Technology,2013,22(4):452.
6 Branagan D J, Swank W D, Haggard D C, et al.Wear-resistant amorphous and nanocomposite steel coatings[J].Metallurgical & Materials Transactions A,2001,32(10):2615.
7 Liu L, Zhang C.Fe-based amorphous coatings: Structures and pro-perties[J].Thin Solid Films,2014,561(26):70.
8 Rodriíguez J, Martín A, Fernández R, et al.An experimental study of the wear performance of NiCrBSi thermal spray coatings[J].Wear,2003,255(7-12):950.
9 Pan J G, Fan Z S, Sun D B, et al.Research on molybdenum-base amorphous and nanocrystalline alloy coatings by high velocity oxy-fuel spraying[J].China Surface Engineering,2004,17(6):22(in Chinese).
潘继岗,樊自拴,孙冬柏,等.超音速火焰喷涂制备钼基非晶纳米晶涂层的研究[J].中国表面工程,2004,17(6):22.
10 Inoue A, Shinohara Y, Gook J S.Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting[J].Materials Transactions JIM,2007,36(12):1427.
11 Ni H S, Liu X H, Chang X C, et al.High performance amorphous steel coating prepared by HVOF thermal spraying[J].Journal of Alloys & Compounds,2009,467(1-2):163.
12 Zois D, Lekatou A, Vardavoulias M.Preparation and characterization of highly amorphous HVOF stainless steel coatings[J].Journal of Alloys & Compounds,2010,504(8):283.
13 Liu W H, Shieu F S, Hsiao W T.Enhancement of wear and corrosion resistance of iron-based hard coatings deposited by high-velocity oxygen fuel (HVOF) thermal spraying[J].Surface & Coatings Technology,2014,249(7):24.
14 Chen Q J, Hu L L, Yang X J, et al.The development of Fe-based amorphous coating by thermal spraying[J].Thermal Spray Techno-logy,2010,2(1):8(in Chinese).
陈庆军,胡林丽,杨湘杰,等.热喷涂Fe基非晶合金涂层的研究现状[J].热喷涂技术,2010,2(1):8.
15 Cohen M H, Turnbull D.Composition requirements for glass formation in metallic and ionic systems[J].Nature,1961,189(4759):131.
16 Nagel S R, Tauc J.Nearly-free-electron approach to the theory of metallic glass alloys[J].Physical Review Letters,1975,35(6):380.
17 Whang S H.New prediction of glass-forming ability in binary alloys using a temperature-composition map[J].Materials Science & Engineering,1983,57(1):87.
18 Inoue A.Stabilization of metallic supercooled liquid[J].Acta Materialia,2000,48(1):279.
19 Takeuchi A, Inoue A.Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J].Materials Transactions,2005,46(12):2817.
20 Guo W, Wu Y, Zhang J, et al.Fabrication and characterization of thermal-sprayed fe-based amorphous/nanocrystalline composite coa-tings: An overview[J].Journal of Thermal Spray Technology,2014,23(7):1157.
21 Liang X B, Cheng J B, Feng Y, et al.Research progress on Fe-based amorphous coatings[J].Journal of Materials Engineering,2017,45(9):1(in Chinese).
梁秀兵,程江波,冯源,等.铁基非晶涂层的研究进展[J].材料工程,2017,45(9):1.
22 Wang Y, Jiang S L, Zheng Y G, et al.Effect of porosity sealing treatments on the corrosion resistance of high-velocity oxy-fuel (HVOF)-sprayed Fe-based amorphous metallic coatings[J].Surface & Coatings Technology,2011,206(6):1307.
23 Bakare M S, Voisey K T, Chokethawai K, et al.Corrosion beha-viour of crystalline and amorphous forms of the glass forming alloy Fe43Cr16Mo16C15B10[J].Journal of Alloys & Compounds,2012,527(3):210.
24 Liu G, An Y, Chen J, et al.Influence of heat treatment on microstructure and sliding wear of thermally sprayed Fe-based metallic glass coatings[J].Tribology Letters,2012,47(1):163.
25 Zhang C, Zhou H, Liu L.Laminar Fe-based amorphous composite coatings with enhanced bonding strength and impact resistance[J].Acta Materialia,2014,72(7):239.
26 Qin Y J, Wu Y P, Zhang J F, et al.Long-term corrosion behavior of HVOF sprayed FeCrSiBMn amorphous/nanocrystalline coating[J].Transactions of Nonferrous Metals Society of China,2015,25(4):1144.
27 Koga G Y, Schulz R, Savoie S, et al.Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors[J].Surface & Coatings Technology,2016,309:938.
28 Luo Q, Sun Y J, Jiao J, et al.Formation and tribological behavior of AC-HVAF-sprayed nonferromagnetic Fe-based amorphous coatings[J].Surface & Coatings Technology,2017,334:253.
29 Vignesh S, Shanmugam K, Balasubramanian V, et al.Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings[J].Defence Technology,2017,13(2):101.
30 Wang G, Xiao P, Huang Z J, et al.Microstructure and wear properties of Fe-based amorphous coatings deposited by high-velocity oxygen fuel spraying[J].Journal of Iron and Steel Research (Internatio-nal),2016,23(7):699.
31 Gong Y B, Wang S L, Nie G M, et al.Effects of kerosene content on microstructure and properties of HVOF Fe-based amorphous coatings[J].China Surface Engineering,2016,29(5):87(in Chinese).
龚玉兵,王善林,聂贵茂,等.煤油流量对HVOF铁基非晶涂层组织与性能的影响[J].中国表面工程,2016,29(5):87.
32 Pukasiewicz A G M, Boer H E D, Sucharski G B, et al. The in-fluence of HVOF spraying parameters on the microstructure, resi-dual stress and cavitation resistance of FeMnCrSi coatings[J].Surface & Coatings Technology,2017,327:158.
33 Wang G, Chen J, Huang Z J, et al.Influence of spraying distance on microstructure and corrosion behavior of amorphous alloy coatings by thermal spraying[J].Journal of Functional Materials,2016,47(6):185(in Chinese).
王刚,陈静,黄仲佳,等.喷涂距离对热喷涂非晶合金涂层组织和腐蚀性能的影响[J].功能材料,2016,47(6):185.
34 Bobzin K, Öte M, Linke T F, et al.Process development for innovative iron alloy metallic glass coatings[J].Advanced Engineering Materials,2016,18(10):1833.
35 Qiao L, Wu Y, Hong S, et al.Relationships between spray parameters, microstructures and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amorphous/nanocrystalline coatings[J].Ultrasonics Sonochemistry,2017,39:39.
36 Zhao X F, Zhou S, Zheng Z Z, et al.Current study and development on friction and wear performances of bulk amorphous alloy[J].Hot Working Technology,2009,38(4):30(in Chinese).
赵晓芬,周盛,郑志镇,等.大块非晶合金摩擦磨损性能研究现状与发展[J].热加工工艺,2009,38(4):30.
37 Milanti A, Matikainen V, Bolelli G, et al.Microstructure and sli-ding wear behavior of Fe-based coatings manufactured with HVOF and HVAF thermal spray processes[J].Journal of Thermal Spray Technology,2016,25(5):1040.
38 Guo Y, Koga G Y, Jr A M J, et al. Microstructural investigation of Fe-Cr-Nb-B amorphous/nanocrystalline coating produced by HVOF[J].Materials & Design,2016,111:608.
39 Zhang C, Liu L, Chan K C, et al.Wear behavior of HVOF-sprayed Fe-based amorphous coatings[J].Intermetallics,2012,29(29):80.
40 Yao H, Zhou Z, Wang L, et al.Thermal conductivity and wear behavior of HVOF-sprayed Fe-based amorphous coatings[J].Coatings,2017,7(10):173.
41 Yasir M, Zhang C, Wang W, et al.Wear behaviors of Fe-based amorphous composite coatings reinforced by Al2O3 particles in air and in NaCl solution[J].Materials & Design,2015,88:207.
42 Wei D D, Chen Q J, Gao J J, et al.Current status of Fe-based bulk amorphous alloy research[J].Rare Metal Materials and Engeering,2009,38(s1):80(in Chinese).
魏丹丹,陈庆军,高霁雯,等.铁基大块非晶合金的发展现状[J].稀有金属材料与工程,2009,38(s1):80.
43 Sadeghimeresht E, Markocsan N, Nylen P.Microstructural characteristics and corrosion behavior of HVAF- and HVOF-sprayed Fe-based coatings[J].Surface & Coatings Technology,2017,318:365.
44 Mahata N, Banerjee A, Bijalwan P, et al.Electrochemical behavior of HVOF-sprayed amorphous and nanocrystalline Fe-based Fe73.13-Si11.12 B10.79Cr2.24C2.72 composite coatings[J].Journal of Materials Engineering & Performance,2017,26(14):1.
45 Li D, Chen X, Hui X, et al.Effect of amorphicity of HVOF sprayed Fe-based coatings on their corrosion performances and contacting osteoblast behavior[J].Surface & Coatings Technology,2017,310:207.
46 Zhang S D, Wu J, Qi W B, et al.Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel[J].Corrosion Science,2016,110:57.
47 Wang Y, Li K Y, Scenini F, et al.The effect of residual stress on the electrochemical corrosion behavior of Fe-based amorphous coa-tings in chloride-containing solutions[J].Surface & Coatings Technology,2016,302:27.
48 Zheng Z B, Zheng Y G, Sun W H, et al.Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution[J].Corrosion Science,2013,76(10):337.
49 Vignal V, Delrue O, Heintz O, et al.Influence of the passive film properties and residual stresses on the micro-electrochemical beha-vior of duplex stainless steels[J].Electrochimica Acta,2010,55(23):7118.
50 Wang Y, Li Y, Lv Y,et al.Summary of studies on corrosion resis-tance of Fe-based amorphous metallic coatings under action of stress[J].Chemical Engineering & Machinery,2016,43(3):284(in Chinese).
王勇,李洋,吕妍,等.应力作用下铁基非晶涂层腐蚀性能影响的研究综述[J].化工机械,2016,43(3):284.
[1] 恭飞, 吴张永, 朱启晨, 张莲芝, 郭翠霞, 王雪婷. NiFe2O4磁流体润滑性实验研究[J]. 材料导报, 2019, 33(z1): 126-131.
[2] 李梦楠, 赵宇光, 谢同伦. 不同蠕化率蠕墨铸铁的干滑动摩擦磨损性能[J]. 材料导报, 2019, 33(z1): 366-368.
[3] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[4] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[5] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[6] 苏新, 王振生, 彭真, 郭建亭. 不同环境气氛中NiAl-2.5Ta-7.5Cr-1B-5Co-2.5Re合金的摩擦磨损特性[J]. 材料导报, 2019, 33(2): 288-292.
[7] 惠阳,刘贵民,闫涛,杜林飞,周雳. 载流摩擦磨损研究现状及展望[J]. 材料导报, 2019, 33(13): 2272-2280.
[8] 蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
[9] 巴奇楠, 宋仁伯, 冯一帆, 李论. 表面爆炸处理后的ZGMn13Cr2钢的冲击磨损性能及硬化机理[J]. 材料导报, 2019, 33(10): 1712-1716.
[10] 周杰, 李克, 王彪, 艾凡荣. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响[J]. 材料导报, 2019, 33(1): 73-77.
[11] 郝贠洪, 雅茹罕, 李慧, 赵呈光. 田口方法下钢化玻璃的冲蚀性能及损伤形貌[J]. CLDB, 2018, 32(8): 1380-1384.
[12] 苏义祥, 张志坚, 邱晓来, 刘解放, 申楠, 刘世铎. Cr3C2对45钢表面超音速火焰喷涂制备的Ni基合金涂层热态抗磨损性能的影响[J]. 材料导报, 2018, 32(6): 899-904.
[13] 赵义鹏, 梁医, 冯虎田, 张立民, 徐斌. 滚动直线导轨副磨损特性和磨损机理试验研究[J]. 材料导报, 2018, 32(6): 915-923.
[14] 周谟金, 蒋业华, 卢德宏, 张孝足. B4C包覆ZTA颗粒增强铁基复合材料制备与性能[J]. 材料导报, 2018, 32(24): 4324-4328.
[15] 张世堂, 赵海朝, 乔玉林. 少层石墨烯负载纳米SiO2复合材料对水润滑性能的影响[J]. 材料导报, 2018, 32(24): 4235-4239.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed