Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4309-4313    https://doi.org/10.11896/j.issn.1005-023X.2018.24.018
  金属与金属基复合材料 |
Cu-Zr非晶合金薄带的高温拉伸蠕变研究
洪凯, 吴林, 蒋伟, 吴继礼, 张博
合肥工业大学材料科学与工程学院,非晶态物质科学研究所,合肥 230009
Tensile Creep Behaviors of Cu-Zr Metallic Glass Ribbons at High Temperature
HONG Kai, WU Lin, JIANG Wei, WU Jili, ZHANG Bo
Institute of Amorphous Matter Science, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009
下载:  全 文 ( PDF ) ( 1601KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以经典的二元非晶合金Cu50Zr50和Cu60Zr40薄带为研究对象,通过动态力学分析仪(DMA)系统研究应力和温度对其接近玻璃转变温度(Tg)下的单轴拉伸蠕变性能的影响。在相同升温速率下分别采用差式扫描热分析与动态力学分析测得其玻璃转变温度。利用阿伦尼乌斯关系得到Cu50Zr50和Cu60Zr40非晶带材蠕变表观激活能分别为5.3 eV和6.2 eV,表明Cu-Zr非晶合金的拉伸蠕变变形与玻璃转变(α弛豫)相关。计算出蠕变应力指数n,发现n随着温度的升高而减小,最终接近1,表明Cu50Zr50和Cu60Zr40非晶在接近玻璃转变温度时蠕变变形趋向于牛顿粘性流动。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
洪凯
吴林
蒋伟
吴继礼
张博
关键词:  Cu-Zr非晶合金薄带  高温拉伸蠕变  激活能  应力指数    
Abstract: The typical Cu50Zr50 and Cu60Zr40 binary metallic glasses ribbons were taken as object of this study, the effects of stress and temperature on uniaxial tensile creep at temperature close to the Tg (glass transition temperature) were studied systematically via dynamic mechanical analyzer (DMA). The Tg was measured by differential scanning calorimeter (DSC) and DMA at the same heating rate, respectively. The apparent activation energies for the creep of Cu50Zr50 and Cu60Zr40 were obtained from Arrhenius equation, which were 5.3 eV and 6.2 eV, respectively. This indicates that the tensile creep deformation of Cu-Zr metallic glasses is related to the glass transition (α-relaxation) behavior. Further calculation showed that creep stress exponent (n) decreasesd with the increasing temperature and was finally close to 1, which demonstrated Cu50Zr50 and Cu60Zr40 metallic glasses tend to be Newtonian viscous flow when they approach to glass transition stage.
Key words:  Cu-Zr metallic glass ribbons    high temperature tensile creep    activation energy    stress exponent
                    发布日期:  2019-01-23
ZTFLH:  O075  
基金资助: 科技部重点研发专项(2016YFB0300500);科技部“973”计划项目(2015CB856800);国家自然科学基金(51571079);中央高校基本科研专项资金(JZ2016HGPB0671)
通讯作者:  张博:通信作者,男,1978年生,教授,主要研究方向为非晶合金材料及其熔体扩散 E-mail:bo.zhang@hfut.edu.cn   
作者简介:  洪凯:男,1993年生,硕士研究生,主要研究方向为非晶合金的蠕变 E-mail:kai.hong@mail.hfut.edu.cn
引用本文:    
洪凯, 吴林, 蒋伟, 吴继礼, 张博. Cu-Zr非晶合金薄带的高温拉伸蠕变研究[J]. 材料导报, 2018, 32(24): 4309-4313.
HONG Kai, WU Lin, JIANG Wei, WU Jili, ZHANG Bo. Tensile Creep Behaviors of Cu-Zr Metallic Glass Ribbons at High Temperature. Materials Reports, 2018, 32(24): 4309-4313.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.018  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4309
1 Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys[J].Acta Materialia,2011,59(6):2243.
2 Argon A. Plastic deformation in metallic glasses[J].Acta Metallurgica,1979,27(1):47.
3 Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys[J].Acta Materialia,2007,55(12):4067.
4 Qiao J C, Pelletier J M. Dynamic mechanical relaxation in bulk metallic glasses: A review[J].Journal of Materials Science & Technology,2014,30(6):523.
5 Zhang Q, Hu Q Z, Zhang B. Preparation and characterization of Zr-Cu amorphous thin film by E-beam and resistance composite evaporation[J].Materials Review B:Reseach Papers,2015,29(6):32(in Chinese).
张倩,胡青卓,张博.电子束与电阻复合蒸发法制备Zr-Cu非晶薄膜及性能表征[J].材料导报:研究篇,2015,29(6):32.
6 Wang W H. The nature and properties of amorphous matter[J].Progree in Physics,2013,33(5):177(in Chinese).
汪卫华.非晶态物质的本质和特性[J].物理学进展,2013,33(5):177.
7 Ashby M F, Greer A L. Metallic glasses as structural materials[J].Scripta Materialia,2006,54(3):321.
8 Sun B, Wang W. The fracture of bulk metallic glasses[J].Progress in Materials Science,2015,74:211.
9 Wang X, Lou H, Bednarcik J, et al. Structural evolution in bulk metallic glass under high-temperature tension[J].Applied Physics Letters,2013,102(5):279.
10 Yoo B G, Kim J Y, Kim Y J, et al. Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency[J].International Journal of Plasticity,2012,37(5):108.
11 Zhu Z X, Wang S Y, Li N,et al. Strong size effect of compressive plasticity of Ce70Ga8.5Cu18.5Ni3 bulk metallic glass at room temperature[J].Materials Review B:Reseach Papers,2016,30(4):92(in Chinese).
朱振西,王守元,李宁,等.Ce70Ga8.5Cu18.5Ni3块体非晶合金的室温压缩塑性的显著尺寸效应[J].材料导报:研究篇,2016,30(4):92.
12 Hu Y, Yan H, Lin T, et al. Effect of cooling rate on the bending plasticity of Zr55Al10Ni5Cu30 bulk metallic glass[J].Journal of Alloys and Compounds,2012,527(9):36.
13 Hu Q Z, Wu J L, Zhang B. Synthesis and nanoindentation behaviors of binary CuTi nanoglass films[J].Physica B: Condensed Matter,2017,521:28.
14 Bobrov O P, Csach K, Khonik V A, et al. Stress relaxation of bulk and ribbon glassy Pd40Cu30Ni10P20[J].Scripta Materialia,2006,54(3):369.
15 Qiao J C, Casalini R, Pelletier J M, et al. Characteristics of the structural and Johari-Goldstein relaxations in Pd-based metallic glass-forming liquids[J].Journal of Physical Chemistry B,2014,118(13):3720.
16 Zhang C, Qiao J C, Pelletier J M, et al. Thermal activation in the Zr65Cu18Ni7Al10 metallic glass by creep deformation and stress rela-xation[J].Scripta Materialia,2016,113:180.
17 Schwabe M, Kuechemann S, Wagner H, et al. Activation volume of microscopic processes in amorphous Pd77.5Cu6.0Si16.5 due to stress and temperature[J].Journal of Non-Crystalline Solids,2011,357(2):490.
18 Yodoshi N, Yamada R, Kawasaki A, et al. Stress relaxation beha-vior of Fe-Co-Si-B-Nb metallic glassy alloys in their supercooled-li-quid state[J].Journal of Alloys and Compounds,2014,612(29):243.
19 Yu H B, Wang W H, Bai H Y, et al. Relating activation of shear transformation zones to beta relaxations in metallic glasses[J].Physical Review B,2010,81(22):235.
20 Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses[J].Progress in Materials Science,2012,57(3):487.
21 Chen Y, Huang J, Wang L, et al. Effect of residual stresses on nanoindentation creep behavior of Zr-based bulk metallic glasses[J].Intermetallics,2013,41(10):58.
22 Dandliker R, Conner R, Johnson W. Melt infiltration casting of bulk metallic-glass matrix composites[J].Journal of Materials Research,1998,13(10):2896.
23 Huang Y, Shen J, Sun J. Bulk metallic glasses: Smaller is softer[J].Applied Physics Letters,2007,90(8):1947.
24 Tang M B , Zhao D Q, Pan M X, et al. Binary Cu-Zr bulk metallic glasses[J].Chinese Physics Letters,2004,21(5):901.
25 Xu D, Lohwongwatana B, Duan G, et al. Bulk metallic glass formation in binary Cu-rich alloy series Cu100-xZrx (x=34,36,38.2,40at.%) and mechanical properties of bulk Cu64Zr36 glass[J].Acta Materialia,2004,52(9):2621.
26 Wang D, Li Y, Sun B B, et al. Bulk metallic glass formation in the binary Cu-Zr system[J].Applied Physics Letters,2004,84(20):4029.
27 Inoue A, Zhang W. Formation, thermal stability and mechanical properties of Cu-Zr and Cu-Hf binary glassy alloy rods[J].Materials Transactions,2004,45(2):584.
28 Peng H, Li M, Wang W. Structural signature of plastic deformation in metallic glasses[J].Physical Review Letters,2011,106(13):135503.
29 Mattern N, Schoeps A, Kuehn U, et al. Structural behavior of CuxZr100-x metallic glass (x=35—70)[J].Journal of Non-Crystalline Solids,2008,354(10):1054.
30 Jiang W, Wu J L, Zhang B. Size effect on beta relaxation in a La-based bulk metallic glass[J].Physica B: Condensed Matter,2017,509:46.
31 Kassner M E. Fundamentals of creep in metals and alloys[M].London: Butterworth-Heinemann,2015:243.
32 Heggen M, Spaepen F, Feuerbacher M. Creation and annihilation of free volume during homogeneous flow of a metallic glass[J].Journal of Applied Physics,2005,97(3):8.
33 Galano M, Rubiolo G H. Creep behaviour of a FeSi-base metallic glass containing nanocrystals[J].Scripta Materialia,2003,48(5):617.
34 Lee K S, Jun H J, Pauly S, et al. Thermomechanical characterization of Cu47.5Zr47.5Al5 bulk metallic glass within the homogeneous flow regime[J].Intermetallics,2009,17(1):65.
[1] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[2] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[3] 朱利敏, 李全安. Mg-8.08Gd-2.41Sm-0.3Zr合金热压缩变形及热加工图[J]. 《材料导报》期刊社, 2018, 32(4): 593-597.
[4] 詹伟涛,贺建雄,王艺臻,姜宏. 羟基含量对全氧燃烧浮法玻璃结构弛豫的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2062-2065.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed