Hot Compression Deformation Behavior and Processing Map of Mg-8.08Gd-2.41Sm-0.3Zr Alloy
ZHU Limin1, 2, LI Quanan1, 2
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023; 2 Collaborative Innovation Center of Nonferrous Metal of Henan Province, Luoyang 471023
Abstract: Mg-8.08Gd-2.41Sm-0.3Zr alloy was prepared by melting and casting method. The hot compression tests were performed on Mg-8.08Gd-2.41Sm-0.3Zr alloy after homogenizing treatment. Hot deformation behavior was investigated at the temperature ranging from 350 ℃ to 500 ℃, strain rate ranging from 0.002 s-1 to 1 s-1 and the maximum deformation of 50%. Deformation activation energy was calculated, the constitutive equation of the plastic deformation of Mg-8.08Gd-2.41Sm-0.3Zr alloy was obtained and the hot processing map was drawn. The results showed that the flow stress decrease with the increase of temperature or the decrease of the strain rate. The dynamic recover and dynamic recrystallization occur obviously during hot compression of Mg-8.08Gd-2.41Sm-0.3Zr alloy. The deformation activation energy was found to be about 213.693 kJ/mol. Two instability zones of flow behavior are established as follows: T=430—500 ℃, $\dot{\varepsilon}$=0.37—1 s-1 and T=350—390 ℃, $\dot{\varepsilon}$ =0.006—1 s-1. The efficiency of power dissipation was above 30% when deformed at T=370—430 ℃, $\dot{\varepsilon}$ =0.37—1 s-1 ; T=390—500 ℃, $\dot{\varepsilon}$=0.006—0.37 s-1 and T=350—500 ℃, $\dot{\varepsilon}$ =0.002—0.006 s-1. The three areas were the optional processing parameters of hot deformation.
1 Luo Shifeng, Yang Guangyu, Liu Shaojun, et al. Microstructure evolution and mechanical properties of directionally solidified Mg-xGd(x=0.8, 1.5, and 2.5) alloys[J].Materials Science and Engineering A,2016,662:241. 2 Zhang Qi, Sun Liangcheng, Lu Fei, et al. Effect of Sm addition on microstrure and mechanical properties of as-cast Mg-6Gd-3Y-0.5Zr alloy[J].Materials Review B:Research Papers,2015,29(5):105(in Chinese). 张奇,孙良成,鲁飞,等.Sm对Mg-6Gd-3Y-0.5Zr铸态组织及性能的影响[J].材料导报:研究篇,2015,29(5):105. 3 Yang Zhong, Li Jianping, Wu Yongxing, et al. Effect of Gd and Y content on microstructure and tensile properties of Mg-Gd-Y-0.5Zr alloy[J].Foundry,2013,62(6):545(in Chinese). 杨忠,李建平,吴永兴,等.Gd和Y含量对Mg-Gd-Y-0.5Zr合金组织性能的影响[J].铸造,2013,62(6):545. 4 Zhao Liwei, Yu Zhongjun, Liu Honghui. Effect of Nd element content on microstructure and properties of Mg-2Ca-xNd alloys[J].Transactions of Materials and Heat Treatment,2013,34(5):110(in Chinese). 赵立伟,于忠军,刘洪汇.Nd元素含量对Mg-2Ca合金组织及性能的影响[J].材料热处理学报,2013,34(5):110. 5 Yang Qingbo, Wu Di, Chen Rongshi, et al. Effect of Gd addition on microstructure and mechanical properties of sand casting Mg-Gd-Y system alloys[J].Foundry,2015,64(9):887(in Chinese). 杨庆波,吴迪,陈荣石,等.Gd元素含量对砂型铸造Mg-Gd-Y合金微观组织和力学性能的影响[J].铸造,2015,64(9):887. 6 Tang Yijin, Zhang Zhenyan, Jin Li, et al. Research progress on ageing precipitation of Mg-Gd alloys[J].The Chinese Journal of Nonferrous Metals,2014,24(1):8(in Chinese). 汤伊金,张桢彦,靳丽,等.Mg-Gd系合金时效析出研究进展[J].中国有色金属学报,2014,24(1):8. 7 Fu Sanling, Li Quanan, Jing Xiaotian, et al. Effect of Gd addition on microstructure and mechanical properties of GW serial magnesium alloys[J].China Foundry,2014,63(1):53(in Chinese). 付三玲,李全安,井晓天,等.Gd含量对GW系镁合金组织和力学性能的影响[J].铸造,2014,63(1):53. 8 Prasad Y V R K, Sasidhara S. Hot working guide: A compendium of processing maps[M].Ohio:ASM International,1997:1. 9 Rao K P, Prasad Y V R K, Suresh K, et al. Hot deformation behavior of Mg-2Sn-2Ca alloy in as-cast condition and after homogenization[J].Materials Science and Engineering A,2012,552:444. 10 Kwak T Y, Lim H K, Kim W J. Effect of Ca and CaO in the microstructure and hot compressive deformation behavior of Mg-9.5Zn-2.0Y alloy[J].Materials Science and Engineering A,2015,648:146. 11 Kwak T Y, Lim H K, Kim W J. Hot compression behavior of the ignition-resistant Mg-5Y-2.5Zn-1.2Ca alloy with long-period stacking ordered structures[J].Journal of Alloys and Compounds,2015,632:417. 12 Wu Yiping, Zhang Xinming, Deng Yunlai, et al. Microstructure and plastic instability criteria of Mg-Gd-Y-Zr alloy during hot compression[J].The Chinese Journal of Nonferrous Metals,2014,24(12):2961(in Chinese). 吴懿萍,张新明,邓运来,等.Mg-Gd-Y-Zr合金热压缩变形组织及塑性失稳判据[J].中国有色金属学报,2014,24(12):2961. 13 Asqardoust Sh, Zarei-hanzaki A, Fatemi S M, et al. High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy[J].Journal of Alloys and Compounds,2016,669:108. 14 Roostaei M, Parsa M H, Mahmudi R, et al. Hot compression behavior of GZ31 magnesium alloy[J].Journal of Alloys and Compounds,2015,631:1. 15 Zhu Limin,Li Quanan,Zhang Qing,et al.Hot compression deformation behavior of Mg-5Gd-3Sm-0.5Zr heat-resistant magnesium alloy[J].Transactions of Materials and Heat Treatment,2016,37(2):31(in Chinese). 朱利敏,李全安,张清,等.Mg-5Gd-3Sm-0.5Zr耐热镁合金热压缩变形行为[J].材料热处理学报,2016,37(2):31. 16 Poirier J P.晶体的高温塑性变形[M].关德林,译.大连:大连理工大学出版社,1989:25. 17 Muty S V S N, Rao B N. On the polar reciprocity model for hot deformation characteristics of materials[J].Bulletin of Material Science,1999,22(1):9. 18 Srinivasan N, Prasad Y V R K, Rao P R. Hot deformation beha-viour of Mg-3Al alloy: A study using processing map[J].Materials Science and Engineering A,2008,476(1-2):146. 19 Wang Lingyun, Fan Yongge, Huang Guangjie, et al. Plastic deformation at elevated temperature and processing maps of magnesium alloy[J].The Chinese Journal of Nonferrous Metals,2004,14(7):1068(in Chinese). 汪凌云,范永革,黄光杰,等.镁合金AZ31B的高温塑性变形及加工图[J].中国有色金属学报,2014,14(7):1068. 20 Peng Jian, Tong Xiaoshan, Shang Shouliang, et al. Hot compression deformation behaviour and processiong map of Mg-6Zn-1Mn magnesium alloy[J].Rare Metal Materials and Engineering,2013,42(8):1627(in Chinese). 彭建,童小山,尚守亮,等.Mg-6Zn-1Mn镁合金的热压缩变形行为及加工图[J].稀有金属材料与工程,2013,42(8):1627.