Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 593-597    https://doi.org/10.11896/j.issn.1005-023X.2018.04.017
  材料研究 |
Mg-8.08Gd-2.41Sm-0.3Zr合金热压缩变形及热加工图
朱利敏1, 2, 李全安1, 2
1 河南科技大学材料科学与工程学院,洛阳 471023;
2 有色金属共性技术河南省协同创新中心,洛阳 471023
Hot Compression Deformation Behavior and Processing Map of Mg-8.08Gd-2.41Sm-0.3Zr Alloy
ZHU Limin1, 2, LI Quanan1, 2
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023;
2 Collaborative Innovation Center of Nonferrous Metal of Henan Province, Luoyang 471023
下载:  全 文 ( PDF ) ( 1971KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用铸造法制备了Mg-8.08Gd-2.41Sm-0.3Zr合金,对该合金进行均匀化处理,然后进行热压缩实验,研究了Mg-8.08Gd-2.41Sm-0.3Zr合金在变形温度为350~500 ℃、应变速率为0.002 s-1、0.01 s-1、0.1 s-1和1 s-1及最大变形量为50%条件下的变形行为,计算了该合金的热变形激活能,构建了合金高温塑性变形的本构关系,建立了合金的热加工图。结果表明:Mg-8.08Gd-2.41Sm-0.3Zr合金的流变应力随着变形温度的升高或者应变速率的降低而显著降低,合金发生动态回复与再结晶,其热变形激活能为Q=213.693 kJ/mol;合金高温变形时存在两个失稳区:T=430~500 ℃、$\dot{\varepsilon}$=0.37~1 s-1以及T=350~390 ℃、$\dot{\varepsilon}$=0.006~1 s-1;合金的能量耗散率大于30%的区域有T=370~430 ℃、$\dot{\varepsilon}$=0.37~1 s-1,T=390~500 ℃、$\dot{\varepsilon}$=0.006~0.37 s-1以及T=350~500 ℃、$\dot{\varepsilon}$=0.002~0.006 s-1,这些区域适合进行热加工。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱利敏
李全安
关键词:  Mg-8.08Gd-2.41Sm-0.3Zr合金  变形激活能  加工图  功率耗散率    
Abstract: Mg-8.08Gd-2.41Sm-0.3Zr alloy was prepared by melting and casting method. The hot compression tests were performed on Mg-8.08Gd-2.41Sm-0.3Zr alloy after homogenizing treatment. Hot deformation behavior was investigated at the temperature ranging from 350 ℃ to 500 ℃, strain rate ranging from 0.002 s-1 to 1 s-1 and the maximum deformation of 50%. Deformation activation energy was calculated, the constitutive equation of the plastic deformation of Mg-8.08Gd-2.41Sm-0.3Zr alloy was obtained and the hot processing map was drawn. The results showed that the flow stress decrease with the increase of temperature or the decrease of the strain rate. The dynamic recover and dynamic recrystallization occur obviously during hot compression of Mg-8.08Gd-2.41Sm-0.3Zr alloy. The deformation activation energy was found to be about 213.693 kJ/mol. Two instability zones of flow behavior are established as follows: T=430—500 ℃, $\dot{\varepsilon}$=0.37—1 s-1 and T=350—390 ℃, $\dot{\varepsilon}$ =0.006—1 s-1. The efficiency of power dissipation was above 30% when deformed at T=370—430 ℃, $\dot{\varepsilon}$ =0.37—1 s-1 ; T=390—500 ℃, $\dot{\varepsilon}$=0.006—0.37 s-1 and T=350—500 ℃, $\dot{\varepsilon}$ =0.002—0.006 s-1. The three areas were the optional processing parameters of hot deformation.
Key words:  Mg-8.08Gd-2.41Sm-0.3Zr alloy    deformation activation energy    processing map    efficiency of power dissipation
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TG146.2+2  
基金资助: 国家自然科学基金(51171059; 51571084); 河南省重点科技攻关项目(152102210072)
通讯作者:  李全安:男,1964年生,博士,教授,博士研究生导师,研究方向为高性能镁合金 E-mail:q-ali@163.com   
作者简介:  朱利敏:女,1977年生,副教授,从事新型镁合金研究 E-mail:zhulimin7705@163.com
引用本文:    
朱利敏, 李全安. Mg-8.08Gd-2.41Sm-0.3Zr合金热压缩变形及热加工图[J]. 《材料导报》期刊社, 2018, 32(4): 593-597.
ZHU Limin, LI Quanan. Hot Compression Deformation Behavior and Processing Map of Mg-8.08Gd-2.41Sm-0.3Zr Alloy. Materials Reports, 2018, 32(4): 593-597.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.017  或          http://www.mater-rep.com/CN/Y2018/V32/I4/593
1 Luo Shifeng, Yang Guangyu, Liu Shaojun, et al. Microstructure evolution and mechanical properties of directionally solidified Mg-xGd(x=0.8, 1.5, and 2.5) alloys[J].Materials Science and Engineering A,2016,662:241.
2 Zhang Qi, Sun Liangcheng, Lu Fei, et al. Effect of Sm addition on microstrure and mechanical properties of as-cast Mg-6Gd-3Y-0.5Zr alloy[J].Materials Review B:Research Papers,2015,29(5):105(in Chinese).
张奇,孙良成,鲁飞,等.Sm对Mg-6Gd-3Y-0.5Zr铸态组织及性能的影响[J].材料导报:研究篇,2015,29(5):105.
3 Yang Zhong, Li Jianping, Wu Yongxing, et al. Effect of Gd and Y content on microstructure and tensile properties of Mg-Gd-Y-0.5Zr alloy[J].Foundry,2013,62(6):545(in Chinese).
杨忠,李建平,吴永兴,等.Gd和Y含量对Mg-Gd-Y-0.5Zr合金组织性能的影响[J].铸造,2013,62(6):545.
4 Zhao Liwei, Yu Zhongjun, Liu Honghui. Effect of Nd element content on microstructure and properties of Mg-2Ca-xNd alloys[J].Transactions of Materials and Heat Treatment,2013,34(5):110(in Chinese).
赵立伟,于忠军,刘洪汇.Nd元素含量对Mg-2Ca合金组织及性能的影响[J].材料热处理学报,2013,34(5):110.
5 Yang Qingbo, Wu Di, Chen Rongshi, et al. Effect of Gd addition on microstructure and mechanical properties of sand casting Mg-Gd-Y system alloys[J].Foundry,2015,64(9):887(in Chinese).
杨庆波,吴迪,陈荣石,等.Gd元素含量对砂型铸造Mg-Gd-Y合金微观组织和力学性能的影响[J].铸造,2015,64(9):887.
6 Tang Yijin, Zhang Zhenyan, Jin Li, et al. Research progress on ageing precipitation of Mg-Gd alloys[J].The Chinese Journal of Nonferrous Metals,2014,24(1):8(in Chinese).
汤伊金,张桢彦,靳丽,等.Mg-Gd系合金时效析出研究进展[J].中国有色金属学报,2014,24(1):8.
7 Fu Sanling, Li Quanan, Jing Xiaotian, et al. Effect of Gd addition on microstructure and mechanical properties of GW serial magnesium alloys[J].China Foundry,2014,63(1):53(in Chinese).
付三玲,李全安,井晓天,等.Gd含量对GW系镁合金组织和力学性能的影响[J].铸造,2014,63(1):53.
8 Prasad Y V R K, Sasidhara S. Hot working guide: A compendium of processing maps[M].Ohio:ASM International,1997:1.
9 Rao K P, Prasad Y V R K, Suresh K, et al. Hot deformation behavior of Mg-2Sn-2Ca alloy in as-cast condition and after homogenization[J].Materials Science and Engineering A,2012,552:444.
10 Kwak T Y, Lim H K, Kim W J. Effect of Ca and CaO in the microstructure and hot compressive deformation behavior of Mg-9.5Zn-2.0Y alloy[J].Materials Science and Engineering A,2015,648:146.
11 Kwak T Y, Lim H K, Kim W J. Hot compression behavior of the ignition-resistant Mg-5Y-2.5Zn-1.2Ca alloy with long-period stacking ordered structures[J].Journal of Alloys and Compounds,2015,632:417.
12 Wu Yiping, Zhang Xinming, Deng Yunlai, et al. Microstructure and plastic instability criteria of Mg-Gd-Y-Zr alloy during hot compression[J].The Chinese Journal of Nonferrous Metals,2014,24(12):2961(in Chinese).
吴懿萍,张新明,邓运来,等.Mg-Gd-Y-Zr合金热压缩变形组织及塑性失稳判据[J].中国有色金属学报,2014,24(12):2961.
13 Asqardoust Sh, Zarei-hanzaki A, Fatemi S M, et al. High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy[J].Journal of Alloys and Compounds,2016,669:108.
14 Roostaei M, Parsa M H, Mahmudi R, et al. Hot compression behavior of GZ31 magnesium alloy[J].Journal of Alloys and Compounds,2015,631:1.
15 Zhu Limin,Li Quanan,Zhang Qing,et al.Hot compression deformation behavior of Mg-5Gd-3Sm-0.5Zr heat-resistant magnesium alloy[J].Transactions of Materials and Heat Treatment,2016,37(2):31(in Chinese).
朱利敏,李全安,张清,等.Mg-5Gd-3Sm-0.5Zr耐热镁合金热压缩变形行为[J].材料热处理学报,2016,37(2):31.
16 Poirier J P.晶体的高温塑性变形[M].关德林,译.大连:大连理工大学出版社,1989:25.
17 Muty S V S N, Rao B N. On the polar reciprocity model for hot deformation characteristics of materials[J].Bulletin of Material Science,1999,22(1):9.
18 Srinivasan N, Prasad Y V R K, Rao P R. Hot deformation beha-viour of Mg-3Al alloy: A study using processing map[J].Materials Science and Engineering A,2008,476(1-2):146.
19 Wang Lingyun, Fan Yongge, Huang Guangjie, et al. Plastic deformation at elevated temperature and processing maps of magnesium alloy[J].The Chinese Journal of Nonferrous Metals,2004,14(7):1068(in Chinese).
汪凌云,范永革,黄光杰,等.镁合金AZ31B的高温塑性变形及加工图[J].中国有色金属学报,2014,14(7):1068.
20 Peng Jian, Tong Xiaoshan, Shang Shouliang, et al. Hot compression deformation behaviour and processiong map of Mg-6Zn-1Mn magnesium alloy[J].Rare Metal Materials and Engineering,2013,42(8):1627(in Chinese).
彭建,童小山,尚守亮,等.Mg-6Zn-1Mn镁合金的热压缩变形行为及加工图[J].稀有金属材料与工程,2013,42(8):1627.
[1] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[2] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[3] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[4] 袁战伟, 李付国, 王春伟, 王瑜, 郭亚杰, 周亮. 基于Murty准则的SiCp/Al复合材料热加工图研究[J]. 《材料导报》期刊社, 2018, 32(4): 657-661.
[5] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[6] 常若寒, 蔡中义, 程丽任, 车朝杰, 迟佳轩. 基于遗传BP网络的Mg-Sm-Zn-Zr合金应力预测模型及加工图[J]. 《材料导报》期刊社, 2017, 31(6): 136-139.
[7] 孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
[8] 胡勇, 陈威, 李晓诚, 彭和思, 丁雨田. HMn62-3-3合金的热变形行为及热加工图*[J]. 《材料导报》期刊社, 2017, 31(16): 144-149.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed