Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 1017-1021    https://doi.org/10.11896/cldb.201906019
  金属与金属基复合材料 |
纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证
王枭1, 于晓华1,2, 李晓宇1,3, 刘成1, 钟毅1, 詹肇麟1, 邓久帅1
1 昆明理工大学材料科学与工程学院, 昆明 650093
2 昆明理工大学固体废弃物资源化国家工程研究中心, 昆明 650093
3 大连理工大学材料科学与工程学院, 大连 116024
Effects of Mechanical Polishing of Pure Fe Surface on the Diffusion of Ti Atoms: a First Principles Study and the Experimental Verification
WANG Xiao1, YU Xiaohua1,2, LI Xiaoyu1,3, LIU Cheng1, ZHONG Yi1, ZHAN Zhaolin1, DENG Jiushuai1
1 Faculty of Materials Science & Engineering, Kunming University of Science and Technology, Kunming 650093
2 Solid Waste Utilization National Engineering Center, Kunming University of Science and Technology, Kunming 650093
3 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
下载:  全 文 ( PDF ) ( 2323KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 基于密度泛函理论的第一性原理方法,计算了空位对纯Fe晶格常数、局域态密度和热力学参数的影响规律,结合Ti原子在纯Fe中的过渡态搜索,阐明了空位对纯Fe表面Ti原子扩散特性的作用机制。模拟计算表明,引入空位后,体系晶格常数和局域态密度减小,Helmholtz自由能和结合能降低,声子振动内能、熵值和等容热容增加。bcc-Fe的3×3×3超胞含一个空位和两个空位时Ti原子的扩散势垒分别为0.659 eV 和0.353 eV。不同温度下体系的扩散系数表明,纯Fe经表面机械研磨处理(SMAT)后,其在673 K即可达到未机械研磨时1 073 K的Ti原子扩散效果。在实验验证环节,借助扫描电镜(SEM)、能谱(EDS)仪和X射线衍射(XRD)仪观察及表征了Fe试样经SMAT处理和673 K双层辉光等离子渗Ti处理后的微观组织、截面元素分布及渗层物相结构。结果表明,增加空位浓度可以有效降低等离子渗钛温度,纯Fe表面生成了12 μm左右的渗Ti层。本工作可为通过调控空位浓度实现低温渗钛的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王枭
于晓华
李晓宇
刘成
钟毅
詹肇麟
邓久帅
关键词:  第一性原理  等离子渗钛  机械研磨  扩散激活能  过渡态    
Abstract: This contribution presents a first principles analysis and experimental study on how the mechanical attrition treatment of pure Fe surface inf-luences Ti atoms diffusion. The influence of vacancies on lattice constant, local density of states, thermodynamic parameters of pure Fe was calculated by PAW method under the framework of density functional theory. Combined with transitional state search, the diffusion behavior of Ti atoms on the surface of pure Fe was investigated. The simulation and calculation showed that the increase of the vacancy concentration can lead to the decreases in lattice constant, local density of states, Helmholtz free energy and binding energy of the system, as well as the increments of phonon-assisted vibrational energy, entropy and constant volume heat capacity. For 3×3×3 supercells of Fe containing one vacancy and two vacancies, the energy barriers of Ti atom diffusion were calculated to be 0.659 eV and 0.353 eV, respectively. Moreover, it was found that the diffusion coefficient at 673 K on the mechanical attrition treated surface approaches the value at 1 073 K on the untreated surface. On the other hand, we conducted the experiments for the microstructure observation, cross-sectional elemental analysis and phase structure determination upon the Fe samples experienced SMAT and double glow plasma tetanizing at 673 K, by means of scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). It was found that the SMAT-induced surface vacancies increment of pure Fe can effectively reduce diffusion temperature, and the formation of about 12 μm thin titanium infiltration layer on the sample surface was observed. Our work is expected to provide a reference for the study of low-temperature plasma titanizing by tailoring surface vacancy concentration.
Key words:  first principles    plasma titanizing    mechanical attrition    diffusion activation energy    transition state
               出版日期:  2019-03-25      发布日期:  2019-04-03
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(51665022);国家自然科学基金青年基金(51601081)
作者简介:  王枭,2016年6月毕业于昆明理工大学,获得工学硕士学位。于2016年9月至今,在昆明理工大学材料科学与工程学院攻读博士,导师为詹肇麟教授。詹肇麟,昆明理工大学材料科学与工程学院教授,博导。主要从事材料表面改性、界面特性等研究。
引用本文:    
王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
WANG Xiao, YU Xiaohua, LI Xiaoyu, LIU Cheng, ZHONG Yi, ZHAN Zhaolin, DENG Jiushuai. Effects of Mechanical Polishing of Pure Fe Surface on the Diffusion of Ti Atoms: a First Principles Study and the Experimental Verification. Materials Reports, 2019, 33(6): 1017-1021.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906019  或          http://www.mater-rep.com/CN/Y2019/V33/I6/1017
1 Zhang C H, Yu F, Wang Y M, et al. Chinese Journal of Rare Matals,2013,37(1),1(in Chinese).
张聪惠, 于飞, 王耀勉,等. 稀有金属,2013,37(1),1.
2 Tao N R. Surface Nanocrystallization microstructure and grain refinement mechanism of pure Fe and Inconel 600 caused by surface mechanical attrition treatment. Master’s Thesis, Institute of Metal Research, Chinese Academy of Science, China,2003(in Chinese).
陶乃镕. 表面机械研磨导致的纯Fe和Inconel 600表面纳米化微观结构及晶粒细化机制研究. 硕士学位论文, 中国科学院金属研究所,2003.
3 Wang H, Zhan Z L, Wu Y X, et al. Transactions of Materials and Heat Treatment,2013,34(s2),184(in Chinese).
王虎, 詹肇麟, 吴云霞, 等. 材料热处理学报,2013,34(s2),184.
4 Tao N R, Sui M L, Lu J, et al. Nanostructured Materials,1999,11(4), 433.
5 Tao N R, Wang Z B, Tong W P, et al. Acta Materialia,2002, 50(18),4603.
6 Tong W P, Tao N R, Wang Z B, et al. Science,2003,299(5607), 686.
7 Tong W P, Han Z, Wang L M, et al. Surface & Coatings Technology,2008,202(20),4957.
8 Zhang Y M, Li Z H, Xu Z. Journal of Taiyuan University Technology,2009,40(3),283(in Chinese).
张艳梅, 李忠厚, 徐重. 太原理工大学学报,2009,40(3),283.
9 Liu H, Ke F J, Pan H, Zhou M. Acta Physca Sinica,2007,56(1),407(in Chinese).
刘浩, 柯孚久, 潘晖, 等. 物理学报,2007,56(1),407.
10 An Y L. Investigation of relative problem about pire iron surface mechanical attrition treatment and first-principles calculations of carbon monoxide surcace absorption. Master’s thesis, Taiyuan University of Technology,China,2011(in Chinese).
安艳丽. 纯铁表面机械研磨相关问题及表面吸附CO的第一性原理研究. 硕士学位论文,太原理工大学,2011.
11 Gao Y. Vacuum,1993(6),53(in Chinese).
高原. 真空,1993(6),53.
12 Yu X, Zhan Z, Rong J, et al. Chemical Physics Letters,2014,600,43.
13 Yu X, Rong J, Zhan Z, et al. Materials & Design,2015,83,15.
14 Yu X, Zhan Z. Nanoscale Research Letters,2014,9(1),516.
15 Villars P, Cenzual K. Pearson's crystal data®:Crystal structure database for inorganic compounds, ASM International, Ohio,2007.
16 Li L H, Wang W L, Hu L, et al. Intermetallics,2014,46,21.
17 Liu N N, Song R B, Sun H Y, et al. Acta Physica Sinica, 2008,57(11),7150(in Chinese).
刘娜娜, 宋仁伯, 孙翰英,等. 物理学报,2008,57(11),7150.
18 Martienssen W, Warlimont H. Springer handbook of condensed matter and materials data,Springer Science & Business Media, Berlin, 2006.
19 Zhao Y H, Lu K. Physical Review B,1997,56(22),14330.
20 Yang C C, Li S. Physical Review B,2007,75(16),165413.
21 Safaei A. The Journal of Physical Chemistry C,2010,114(32),13482.
22 Sun C Q, Wang Y, Tay B K, et al. The Journal of Physical Chemistry B,2002,106(41),10701.
23 Wert C, Zener C. Physical Review,1949,76(8),1169.
24 Yang B, Wang L G, Yi Y, et al. Acta Physica Sinica,2015,64(2),356(in Chinese).
杨彪, 王丽阁, 易勇,等.物理学报,2015,64(2),356.
25 Laidler K J. Journal of Chemical Education,1984,61(6),494.
[1] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[2] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[3] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[4] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[5] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[6] 周勇, 党墨含, 孙良, 翟文彦, 董会, 高倩, 赵飞, 彭建洪. Mg13Al14和Mg17Al12中间合金的第一性原理研究[J]. 材料导报, 2019, 33(24): 4111-4116.
[7] 马容, 张兆春, 郭海波, 谢耀平. 锂氦在钨中的行为及其对钨力学和热力学性质影响的第一性原理研究[J]. 材料导报, 2019, 33(24): 4164-4169.
[8] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[9] 李亚敏, 江璐, 赵旺, 陈银萍. 铜掺杂对γ'相影响的第一性原理研究[J]. 材料导报, 2019, 33(18): 3085-3088.
[10] 宋政骢, 米国发, 王有超, 刘晨, 历长云. W-Re二元合金弹性和热力学性质的第一性原理计算[J]. 材料导报, 2019, 33(16): 2785-2792.
[11] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[12] 徐志超, 冯中学, 史庆南, 杨应湘. Mg-Zn-Y合金中14H-LPSO相与W相的电子结构与弹性性能的第一性原理计算[J]. 材料导报, 2018, 32(6): 1026-1031.
[13] 宋庆功, 许科, 顾威风, 甄丹丹, 郭艳蕊, 胡雪兰. Zr和Mo双掺杂γ-TiAl基合金的稳定性与延性预测[J]. 材料导报, 2018, 32(18): 3154-3160.
[14] 胡洁琼, 谢明, 陈永泰, 陈松, 张吉明, 王塞北. Pt-M(M=Fe, Co, Ni)金属间化合物电子结构和弹性性质的[J]. 《材料导报》期刊社, 2018, 32(14): 2467-2474.
[15] 杨俊茹,王铭兰,刘树,孙绍帅,陈学成. 基于第一性原理的α-Fe(001)/Mo2FeB2(001)界面性能的研究*[J]. 材料导报编辑部, 2017, 31(22): 159-162.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed