Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2785-2792    https://doi.org/10.11896/cldb.18070004
  金属与金属基复合材料 |
W-Re二元合金弹性和热力学性质的第一性原理计算
宋政骢, 米国发, 王有超, 刘晨, 历长云
河南理工大学材料科学与工程学院,焦作 454100
First-principles Calculation of Elastic and Thermodynamic Properties of W-Re Binary Alloy
SONG Zhengcong, MI Guofa, WANG Youchao, LIU Chen, LI Changyun
School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454100
下载:  全 文 ( PDF ) ( 3487KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用基于密度泛函理论的第一性原理方法从原子尺度对不同成分W-Re二元合金的弹性性能和热力学性能进行了研究。根据特殊准随机模型构建不同成分合金的无序固溶体模型,并对其晶格结构进行了优化。计算结果表明,随着固溶体中Re原子浓度的增加, 生成焓和结合能的数值变大,固溶体越难生成,固溶体的稳定性越差。通过电子态密度对固溶体稳定性进行了解释。采用应力-应变法对优化后结构的独立弹性常数进行计算,结果表明,本工作构建的所有固溶体均满足力学稳定性判据。根据V-R-H(Voigt-Reuss-Hill)近似对固溶体各项力学常数进行计算,结果表明,随着固溶体中Re原子浓度的增大,其体模量不断增大,剪切模量和杨氏模量不断减小。由各脆韧性判据可知,各固溶体均呈韧性,且提高Re原子的浓度会提升固溶体的韧性。最后在准谐近似的基础上计算不同成分合金的声子谱和相应的声子态密度,W12Re4声子谱中存在大量虚频,表明该结构不能稳定存在。本工作可为W-Re合金的相关实验研究和实际生产提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋政骢
米国发
王有超
刘晨
历长云
关键词:  W-Re二元合金  弹性性能  热力学性能  第一性原理    
Abstract: In this work, the first-principles method based on density functional theory was used to study the elastic and thermodynamic properties of W-Re binary alloys with different compositions. According to the special quasi-random model, the disordered solid solution model of solid solution alloys was constructed and its lattice structure was optimized. The results showed that, the value of enthalpy and binding energy was increasing, and the solid solution was more difficult to form, the stability of solid solution was worse as the concentration of Re atoms in the solid solution increasing. The electronic level density was used to explain its stability. Then, the stress-strain method was used to calculate the independent elastic constant of the optimized structure. It was verified that the solid solutions constructed satisfy the mechanical stability criterion in this work. The mechanical constants of the solid solution were calculated according to the V-R-H (Voigt-Reuss-Hill) approximation, and the results showed that the bulk modulus of the solid solution increased, and the shear modulus and Young's modulus decreased with the increase of the concentration of Re. Each solid solution showed toughness, according to the brittleness and toughness criterion, the toughness of the solid solution was increased by increasing the concentration of Re atoms. Finally, based on the quasi-harmonic approximation, the phonon spectra and the corresponding phonon densities of states of alloys with different composition were calculated.There was a large number of virtual frequencies in the W12Re4 phonon spectrum, which indicates that the structure is unstable. The calculation and research in this work can provide some references for the relevant experimental research and practical production of W-Re alloys.
Key words:  W-Re binary alloy    elastic properties    thermodynamic properties    first-principles
                    发布日期:  2019-07-12
ZTFLH:  TG146.4  
基金资助: 河南省自然科学基金(182300410266)
作者简介:  宋政骢,河南理工大学硕士研究生在读。主要研究方向为金属凝固理论。
米国发,河南理工大学校级特聘教授,博士研究生导师。1985年9月至1995年8月在哈尔滨工业大学分别获得学士和博士学位。中国铸造学会理事、全国特种铸造及有色合金专业委员会委员、全国铸钢及熔炼技术委员会委员、中国机械工业教育协会材料成型及控制学科教学委员会铸造分会委员、河南省铸锻工业协会常务理事、河南省有色金属学会常务理事、河南省有色金属新材料及加工专业委员会副理事长;省级“非平衡凝固与亚稳材料”创新团队负责人;省“凝固技术与亚稳材料”院士工作站负责人。长期从事金属凝固技术、快速凝固喷射成型技术、快速凝固亚稳材料的制备与性能、可视化铸造技术的研究与应用等研究与开发工作。以项目负责人先后主持完成了“九五”国防重点预研项目、航空科学基金项目、国际合作重点项目及精密热加工国防科技重点实验室开放基金项目共四项;作为主要参加人参与完成了国家自然科学基金重点项目、航空部重点预研项目及基金项目共四项;获省部级科技进步奖二等奖两项;省部级科技进步奖三等奖一项;获市厅级科技进步奖二等奖两项。出版专著二部,发表学术论文九十余篇,其中被SCI、EI检索收录五十篇。
引用本文:    
宋政骢, 米国发, 王有超, 刘晨, 历长云. W-Re二元合金弹性和热力学性质的第一性原理计算[J]. 材料导报, 2019, 33(16): 2785-2792.
SONG Zhengcong, MI Guofa, WANG Youchao, LIU Chen, LI Changyun. First-principles Calculation of Elastic and Thermodynamic Properties of W-Re Binary Alloy. Materials Reports, 2019, 33(16): 2785-2792.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070004  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2785
[1] Yuan Bo, Li Zhongshan, Liu Liangxian, et al. China Mining Magazine, 2016(1), 15 (in Chinese).
袁博,李钟山,刘良先,等. 中国矿业, 2016(1), 15.
[2] Jia Chengchang, Zhou Wuping. Metal World, 2012(6), 11 (in Chinese).
贾成厂,周武平. 金属世界, 2012(6), 11.
[3] Zhou H, Li Y, Lu G. Computational Materials Science, 2016, 112, 487.
[4] Zhang N, Zhang Y, Zhang P, et al. Applied Physics Express, 2018, 11(1), 15801.
[5] Shi Yingjiang. Rare Metal Materials and Engineering, 1993(6), 12 (in Chinese).
石应江. 稀有金属材料与工程, 1993(6), 12.
[6] Kaufmann M, Neu R. Fusion Engineering and Design, 2007, 82(5), 521.
[7] Fu Jie,Li Zhongkui,Zheng Xin, et al. Materials China, 2005, 24(7),11 (in Chinese).
付洁,李中奎,郑欣,等. 稀有金属快报, 2005, 24(7), 11.
[8] Wang Yujin, Zhang Taiquan, Zhou Yu, et al. Rare Metal Materials and Engineering, 2009(S1), 65 (in Chinese).
王玉金,张太全,周玉,等. 稀有金属材料与工程, 2009(S1), 65.
[9] Crivello J, Joubert J. Journal of Physics: Condensed Matter, 2010, 22(3), 35402.
[10] Vk Sikka J M. Metallurgical Transactions, 1974, 5(6), 1514.
[11] Wei N, Jia T, Zhang X, et al. AIP Advances, 2014, 4(5), 57103.
[12] Jiang C. Acta Materialia. 2009, 57(16), 4716.
[13] Rajagopal A K. Physical Review B, 1973, 7(5), 1912.
[14] Kohn W S L. Physical Review, 1965, 140(4A), A1133.
[15] Zhang N, Zhang Y, Yang Y, et al. The European Physical Journal B,2017, 90(5), 1.
[16] Zhou H, Ou X, Zhang Y, et al. Journal of Nuclear Materials, 2013, 440(1-3), 338.
[17] Kresse G. Journal of Non-Crystalline Solids, 1995, 192-193, 222.
[18] Kresse G, Furthmüller J. Computational Materials Science, 1996, 6(1), 15.
[19] Blchl P. Physical Review B, 1994, 50(24), 17953.
[20] Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865.
[21] Kresse G, Furthmuller J. Physical Review B, 1996, 54(16), 11169.
[22] Togo A, Tanaka I. Scripta Materialia, 2015, 108, 1.
[23] Birch F. Physical Review, 1947, 71(11), 809.
[24] Pugh S F. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367), 823.
[25] Liu Jiqiong, Lu Xiaogang. Shanghai Metals, 2017(1), 75 (in Chinese).
刘继琼,鲁晓刚. 上海金属, 2017(1), 75.
[26] Zhou D, Liu J, Peng P. Transactions of Nonferrous Metals Society of China, 2011, 21(12), 2677.
[27] Wang Guodong, Xu Jiang. China Science and Technology Information, 2014(5), 59 (in Chinese).
王国栋,徐江. 中国科技信息, 2014(5), 59.
[28] Kushwah S S, Sharma M P, Tomar Y S. Physica B: Condensed Matter, 2003, 339(4), 193.
[1] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[2] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[3] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[4] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[5] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[6] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[7] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[8] 徐志超, 冯中学, 史庆南, 杨应湘. Mg-Zn-Y合金中14H-LPSO相与W相的电子结构与弹性性能的第一性原理计算[J]. 材料导报, 2018, 32(6): 1026-1031.
[9] 宋庆功, 许科, 顾威风, 甄丹丹, 郭艳蕊, 胡雪兰. Zr和Mo双掺杂γ-TiAl基合金的稳定性与延性预测[J]. 材料导报, 2018, 32(18): 3154-3160.
[10] 胡洁琼, 谢明, 陈永泰, 陈松, 张吉明, 王塞北. Pt-M(M=Fe, Co, Ni)金属间化合物电子结构和弹性性质的[J]. 《材料导报》期刊社, 2018, 32(14): 2467-2474.
[11] 杨俊茹,王铭兰,刘树,孙绍帅,陈学成. 基于第一性原理的α-Fe(001)/Mo2FeB2(001)界面性能的研究*[J]. 材料导报编辑部, 2017, 31(22): 159-162.
[12] 周惦武,何蓉,刘金水,彭平. Ge、Si元素对ZrO2和Zr(Fe,Cr)2能量与电子结构的影响*[J]. 材料导报编辑部, 2017, 31(22): 146-152.
[13] 张旭昀, 郑冰洁, 郭斌, 吴戆, 王文泉, 王勇. 高氮奥氏体不锈钢中N与Cr、Mn、Mo键合性质研究*[J]. 《材料导报》期刊社, 2017, 31(18): 146-149.
[14] 赵小康,王海东,万巍,郭慧. 三元正极材料LiNi1/3Co1/3Mn1/3O2的结构及第一性原理计算*[J]. 材料导报编辑部, 2017, 31(10): 127-131.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed