Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2467-2474    https://doi.org/10.11896/j.issn.1005-023X.2018.14.026
  金属与金属基复合材料 |
Pt-M(M=Fe, Co, Ni)金属间化合物电子结构和弹性性质的
胡洁琼1,2, 谢明1,2, 陈永泰1,2, 陈松1,2, 张吉明1,2, 王塞北1,2
1 昆明理工大学材料科学与工程学院,昆明 650093;
2 昆明贵金属研究所,昆明 650106
A First Principles Study of Electronic Structures and Elastic Properties of the Pt-M(M=Fe, Co, Ni) Intermetallic Compounds
HU Jieqiong1,2, XIE Ming1,2, CHEN Yongtai1,2, CHEN Song 1, 2, ZHANG Jiming1,2, WANG Saibei1,2
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Kunming Institute of Precious Metals, Kunming 650106
下载:  全 文 ( PDF ) ( 5034KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过基于密度泛函理论的第一性原理计算方法,研究了Pt-M(M=Fe, Co, Ni)各金属间化合物的结构、能量、电子结构和弹性性质。首先对Pt-M(M=Fe, Co, Ni) 金属间化合物进行几何优化,对其能带结构、总态密度、分态密度、键合特征和弹性性质进行研究,并计算各金属间化合物的结合能与生成焓。计算所得晶格参数与实验值和文献计算值吻合。PtFe3的生成焓最小,结合能最大,说明PtFe3较其他合金相更稳定、键合力更强。通过对Pt-M(M=Fe, Co, Ni)的能带结构和电子态密度进行计算,分析了其结构稳定性的物理本质。PtFe3-t中Pt-Fe和Fe-Fe键相比其他合金相键长较短且电荷密度较高,说明PtFe3-t中Pt-Fe和Fe-Fe键的键能比其他合金相大,所以PtFe3-t合金相的结构稳定性最好。对Pt-M(M=Fe, Co, Ni)弹性性质的研究表明PtFe3为脆性相,PtFe、Pt3Fe、PtCo、Pt3Co、PtNi和PtNi3为延性相,其中Pt3Co的塑性最好,PtFe3-t有较高的弹性模量,其原子间结合力相对较强,材料的强度较大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡洁琼
谢明
陈永泰
陈松
张吉明
王塞北
关键词:  第一性原理  Pt-M(M=Fe, Co, Ni)金属间化合物  电子结构  弹性性质    
Abstract: Phase structures, energies, electronic structures and elastic properties of the Pt-M(M=Fe, Co, Ni) intermetallic compounds were investigated by means of first-principles calculations from CASTEP program based on the density functional theory. Crystal structures of Pt-M(M=Fe, Co, Ni) intermetallic compounds were firstly optimized and then the band structure, total and partial density of states, bonding characteristics and elastic properties of these compounds were analyzed, the cohesive energies and formation enthalpies of these phases are also calculated. The calculated lattice parameters coincided well with the experimental and literature values. According to the calculation results, PtFe3 has the minimum formation enthalpies and the maximum cohesive energies compared to other alloy phases, indicating that PtFe3 has the most stable structure and strongest bonding energy. The band structures and density of states of Pt-M(M=Fe, Co, Ni) intermetallic compounds were calculated to analyze the physical essence of their structural stability and electronic properties. It should be noted that the calculated bond length of Pt-Fe and Fe-Fe in PtFe3-t is shorter than another phases, which illustrated the relatively high stability of PtFe3-t. The charge density provides a measure of the bond strength, so that PtFe3-t have stronger bond energy than another intermetallic compounds. The calculated elastic properties of Pt-M(M=Fe, Co, Ni) intermetallic compounds suggested the brittleness of PtFe3 and the ductility of PtFe, Pt3Fe, PtCo, Pt3Co, PtNi and PtNi3,among which Pt3Co is the most ductile. The calculated elasticity modulus of PtFe3 is the highest, so the atomic binding forces of PtFe3 is relatively strong, and thereby significantly strengthening the PtFe3-t.
Key words:  first-principles    Pt-M(M=Fe, Co, Ni) intermetallic compounds    electronic structure    elastic property
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TB34  
基金资助: 国家自然科学基金(U1602275;U1602271;U1302272;51267007;51461023);云南省院所技术开发专项项目(2013DC016);云南省稀贵金属材料协同创新基金(2014XT02)
通讯作者:  谢明,男,1965年生,博士,教授,研究方向为粉末冶金新材料及新工艺 Tel:0871-68328841 E-mail:hujq@ipm.com.cn   
作者简介:  胡洁琼:女,1982年生,博士研究生,工程师,研究方向为稀贵金属合金相图及第一性原理 E-mail:joanr8210@163.com
引用本文:    
胡洁琼, 谢明, 陈永泰, 陈松, 张吉明, 王塞北. Pt-M(M=Fe, Co, Ni)金属间化合物电子结构和弹性性质的[J]. 《材料导报》期刊社, 2018, 32(14): 2467-2474.
HU Jieqiong, XIE Ming, CHEN Yongtai, CHEN Song, ZHANG Jiming, WANG Saibei. A First Principles Study of Electronic Structures and Elastic Properties of the Pt-M(M=Fe, Co, Ni) Intermetallic Compounds. Materials Reports, 2018, 32(14): 2467-2474.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.026  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2467
1 Jia Chengchang. Application discovery of soft magnetic materials by sintered metal powder[J].Metal World,2014(3):13(in Chinese).
贾成厂.烧结金属软磁材料及应用大揭密[J].金属世界,2014(3):13.
2 Zhu Xiaolu, Tian Jing. Application of magnetic nanoparticle in stem cells[J].Orthopedic Journal of China,2012(11):65(in Chinese).
朱晓璐,田京.磁性纳米颗粒在干细胞的应用研究[J].中国矫形外科杂志,2012(11):65.
3 An Yukai, Duan Lingshen, Liu Tao, et al. Structural and magnetic properties of Pt in Co/Pt multilayers[J]. Applied Surface Science,2011,257(17):7427.
4 Newkirk J B, Geisler A N, Martin D L,et al. Ordering reaction in cobalt-platinum alloys[J]. Journal of Metals,1950,188:1249.
5 Bhattacharjee S, Yoo S J, Waghmare U V, et al. NH3 adsorption on PtM (Fe, Co, Ni) surfaces: Cooperating effects of charge transfer, magnetic ordering and lattice strain[J]. Chemical Physics Letters,2016,648:166.
6 Ferrando Riccardo. Magnetism in nanoalloys[J]. Frontiers of Nanoscience,2016,10:245.
7 Skomski R, Coey J. Giant energy product in nanostructured two-phase magnets[J]. Physical Review B Condensed Matter,1993,48(21):15812.
8 Xiao Q F, Bruck E, Zhang Z D, et al. Remanence enhancement in nanocrystalline CoPt bulk magnets[J]. Journal of Alloys and Compounds,2002,336(1-2):41.
9 Yang Z G, Xu X H, Wu H S. Structures and magnetic properties of CoPt and CoPt/Ag thin films[J]. Rare Metal Materials and Engineering,2005,34(11):1713(in Chinese).
杨治广,许小红,武海顺.CoPt和CoPt/Ag合金薄膜的结构和磁性能[J].稀有金属材料与工程,2005,34(11):1713.
10 Xu X H, Duan J F, Yang Z G, et al. The structure and magnetic properties of Co1-xPtx thin films[J]. Rare Metal Materials and Engineering,2005,34(9):1365(in Chinese).
许小红,段静芳,杨治广,等.Co1-xPtx薄膜的结构与磁学性能[J].稀有金属材料与工程,2005,34(9):1365.
11 Sternik M, Couet S, Lazewski J, et al. Dynamical properties of ordered Fe-Pt alloys[J]. Journal of Alloys and Compounds,2015,651:528.
12 Massalski T B, Murray J L, Bennett L H, et al. Binary alloy phase diagrams[M]. England: ASM International,1990:1752.
13 Wasserman E F. Chapter 3 Invar: Moment-volume instabilities in transition metals and alloys[J]. Handbook of Ferromagnetic Mate-rials,1990,5:237.
14 Mohri Tetsuo, Chen Ying. First-principles investigation of L10-di-sorder phase equilibria of Fe-Ni,-Pd, and -Pt binary alloy systems[J]. Journal of Alloys and Compounds,2004,383(1-2):23.
15 Shibli S, Beenakumari K. Electrodeposited nickel/platinum alloy as a biosensor for acetylcholine[J]. Electroanalysis,2006,18(5):465.
16 Ma Y, Balbuena P. Pt surface segregation in bimetallic Pt3M alloys: A density functional theory study[J]. Surface Science,2008,602(1):107.
17 Clarke L J,Štich I, Payne M C. Large-scale ab initio total energy calculations on parallel computers[J]. Computer Physics Communications,1992,72(1):14.
18 Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B Condensed Matter,1992,46(11):6671.
19 Buschow K H J, Engen P G V, Jongebreur R. Magneto-optical properties of metallic ferromagnetic materials[J]. Journal of Magnetism and Magnetic Materials,1983,38(1):1.
20 Cabri L J, Feather C E. Platinum-iron alloys: A nomenclature based on a study of natural and synthetic alloys[J]. The Canadian Minera-logist,1975,13(2):117.
21 Nakata Y. The crystal structure and magnetic properties of Fe3Pt martensite determined by first principle calculations[J]. Materials Transactions,2003,44(9):1706.
22 Leroux C, Cadeville M C, Pierron-Bohnes V, et al. Comparative investigation of structural and transport properties of L10 NiPt and CoPt phases; the role of magnetism[J]. Journal of Physics F: Metal Physics,1988,18(9):2033.
23 Jen S U. Effect of atomic order on some physical properties of Co25-Pt75[J]. Journal of Alloys and Compounds,1996,234(2):231.
24 Kim D, Saal J, Zhou L, et al. Thermodynamic modeling of fcc order/disorder transformations in the Co-Pt system[J]. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry,2011,35(3):323.
25 Stojkovic M, Kotedki V, Cekic B, et al. Structure and electronic properties of Mo3Pt, MoPt2, and MoPt3: First-principles calculations[J]. Physics Abstract Service,2008,77(19):193111.
26 Azar S M, Mausa A A, khalifeh J M. Structural, electronic and magnetic properties of Ti1+xFeSb Heusler alloys[J]. Intermetallics,2017,85:197.
27 Zheng Yibing, Wang Fen, Ai Taotao, et al. Structural, elastic and electronic properties of B2-type modified by ternary additions FeAl-based intermetallics: First-principles study[J]. Journal of Alloys and Compounds,2017,710:581.
28 Yu Weiyang, Wang Na, Xiao Xiaobing, et al. First-principles investigation of the binary AB2 type Laves phase in Mg-Al-Ca alloy: Electronic structure and elastic properties[J]. Solid State Sciences,2009,11(8):1400.
29 Yang Xiaomin, Hou Hua, Zhao Yuhong, et al. First-principles investigation of the structural, electronic and elastic properties of MgxAl4-xSr (x=0,0.5,1) phases[J]. Computational Materials Science,2014,84:374.
30 Liu Yong, Hua Wencheng, Li Dejiang, et al. First-principles investigation of structural and electronic properties of MgCu2 laves phase under pressure[J]. Intermetallics,2012,31:257.
31 Hua Wencheng, Liu Yong, Li Dejiang, et al. Mechanical and thermodynamic properties of Al3Sc and Al3Li precipitates in Al-Li-Sc alloys from first-principles calculations[J]. Physica B: Condensed Matter,2013,427:85.
32 Fan Kaimin,Yang Li,Sun Qinqiang,et al. First principle study of elastic properties of ErAx(A=H,He) hexagonal phase[J]. Acta Physica Sinica,2013,62:116201.
[1] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[2] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[3] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[4] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[5] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[6] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[7] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[8] 宋政骢, 米国发, 王有超, 刘晨, 历长云. W-Re二元合金弹性和热力学性质的第一性原理计算[J]. 材料导报, 2019, 33(16): 2785-2792.
[9] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[10] 徐志超, 冯中学, 史庆南, 杨应湘. Mg-Zn-Y合金中14H-LPSO相与W相的电子结构与弹性性能的第一性原理计算[J]. 材料导报, 2018, 32(6): 1026-1031.
[11] 刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
[12] 宋庆功, 许科, 顾威风, 甄丹丹, 郭艳蕊, 胡雪兰. Zr和Mo双掺杂γ-TiAl基合金的稳定性与延性预测[J]. 材料导报, 2018, 32(18): 3154-3160.
[13] 李飞, 廖怡君, 王旭, 朱庆丰, 崔建忠. Zr元素对纯铝细化机理的电子理论研究[J]. 材料导报, 2018, 32(18): 3190-3194.
[14] 杨俊茹,王铭兰,刘树,孙绍帅,陈学成. 基于第一性原理的α-Fe(001)/Mo2FeB2(001)界面性能的研究*[J]. 材料导报编辑部, 2017, 31(22): 159-162.
[15] 周惦武,何蓉,刘金水,彭平. Ge、Si元素对ZrO2和Zr(Fe,Cr)2能量与电子结构的影响*[J]. 材料导报编辑部, 2017, 31(22): 146-152.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed