Please wait a minute...
材料导报  2018, Vol. 32 Issue (18): 3190-3194    https://doi.org/10.11896/j.issn.1005-023X.2018.18.016
  金属与金属基复合材料 |
Zr元素对纯铝细化机理的电子理论研究
李飞1,2, 廖怡君1, 王旭1, 朱庆丰2, 崔建忠2
1 辽宁石油化工大学机械工程学院,抚顺 113001;
2 东北大学材料电磁过程研究教育部重点实验室,沈阳 110819
Electron Theory Study of the Refinement Mechanism of Zr Element on Pure Al
LI Fei1,2, LIAO Yijun1, WANG Xu1, ZHU Qingfeng2, CUI Jianzhong2
1 School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001;
2 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819
下载:  全 文 ( PDF ) ( 1041KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于固体与分子经验电子理论(EET),计算了Al-Zr合金熔体中相及相界面的价电子结构,获得了表征合金性能关系的价电子结构参数统计值,并利用这些参数讨论了Zr对纯铝晶粒细化的机理。结果表明:Zr对纯铝的细化机理可以追溯到熔体中Al3Zr与α-Al相晶面间的界面共价电子密度差的统计值Δρ′,即Δρ′<10%且Δρ′值越小,合金中的异质形核效应越好,晶粒细化效果越好。Δρ′值小(2.789 04%)的Al-Al原子团簇能较容易地被异质形核核心(Al3Zr晶体)吸附,促进异质形核及晶粒细化作用;而Δρ′值大(15.698 70%)的Al-Zr原子团簇容易从异质晶核上脱离,削弱异质形核及晶粒细化效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李飞
廖怡君
王旭
朱庆丰
崔建忠
关键词:  Zr元素  纯铝  固体与分子经验电子理论  价电子结构  细化机理    
Abstract: Valence electron structures (VES) of the phases and the phase interfaces in the Al-Zr melt were calculated based on the empirical electron theory (EET) of solids and molecules. Meanwhile, the statistical values of VES parameters used for charactering properties of alloys were obtained, and then these parameters were used to discuss the refinement mechanism of pure Al by adding the Zr element. The results show that the refinement effect of Zr on pure Al can be related to the statistic value of the covalent electron density difference Δρ′ between interfaces of the Al3Zr and α-Al phases. When Δρ′ is less than 10%, with decreasing the value of Δρ′, there is more heterogeneous nucleation, and thus the grain refinement effect is better. The Al-Al clusters with low Δρ′ (2.789 04%) value will be adsorbed by heterogeneous nuclei (Al3Zr particles), resulting in grain refinement. However, the Al-Zr clusters with high Δρ′ (15.698 70%) value are easy to separate from the nuclei, which will reduce the heterogeneous nuclei and refinement effect.
Key words:  Zr element    pure Al    empirical electron theory of solids and molecules    valence electron structure    refinement mechanism
                    发布日期:  2018-10-18
ZTFLH:  TG146.2  
  TG111.1  
基金资助: 国家重点基础研究发展计划项目(2012CB619506);辽宁石油化工大学国家级科研项目培育基金(2016PY-020);辽宁省博士科研启动基金(20170520008)
作者简介:  李飞:男,1979年生,博士,讲师,主要从事铝合金组织与性能、材料的电子理论等研究 E-mail:lf0082003@163.com
引用本文:    
李飞, 廖怡君, 王旭, 朱庆丰, 崔建忠. Zr元素对纯铝细化机理的电子理论研究[J]. 材料导报, 2018, 32(18): 3190-3194.
LI Fei, LIAO Yijun, WANG Xu, ZHU Qingfeng, CUI Jianzhong. Electron Theory Study of the Refinement Mechanism of Zr Element on Pure Al. Materials Reports, 2018, 32(18): 3190-3194.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.18.016  或          http://www.mater-rep.com/CN/Y2018/V32/I18/3190
1 Meng Y, Cui J Z, Zhao Z H, et al. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting[J]. Materials Characterization,2014,92(6):138.
2 Su J, Xiao Y D, Li W X, et al. Grain refinement mechanism of zirconium and rare earth element on Al-Mg casting alloy[J]. Journal of Materials and Metallurgy,2005,4(1):55(in Chinese).
苏婕,肖于德,黎文献,等.锆和稀土元素细化Al-Mg合金铸态组织的机理探讨[J].材料与冶金学报,2005,4(1):55.
3 Li H Z, Zhang X M, Chen M A, et al. Effect Zr content on microstructures and properties of 2519 aluminum alloy[J]. Heat Treatment of Metals,2004,29(11):11(in Chinese).
李慧中,张新明,陈明安,等.Zr含量对2519铝合金组织与力学性能的影响[J].金属热处理,2004,29(11):11.
4 路贵民,柯东杰.铝合金熔炼理论与工艺[M].沈阳:东北大学出版社,1999:188.
5 刘相法,边秀房.铝合金组织细化用中间合金[M].长沙:中南大学出版社,2012:49.
6 Wang F, Qiu D, Liu Z L, et al. The grain refinement mechanism of cast aluminium by zirconium[J]. Acta Materialia,2013,61(15):5636.
7 Wang F, Qiu D, Liu Z L, et al. Crystallographic study of Al3Zr and Al3Nb as grain refiners for Al alloys[J]. Transactions of Nonferrous Metals Society of China,2014,24(7):2034.
8 Zhao Y T, Sun G X. In situ synthesis of novel composites in the system Al-Zr-O[J]. Journal of Materials Science Letters,2001,20(20):1859.
9 Wang F, Liu Z L, Qiu D, et al. Revisiting the role of peritectics in grain refinement of Al alloys[J]. Acta Materialia,2013,61(1):360.
10 Zhao Y T, Li Z H, Cheng X N, et al. In-situ synthesized (Al3Zr+Al2O3)p/A356 composites by direct melt reaction in Al-Zr-O system[J]. Transactions of Nonferrous Metals Society of China,2003,13(4):769.
11 张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993:12.
12 刘志林,林成.合金电子结构参数统计值及合金力学性能计算[M].北京:冶金工业出版社,2008:9.
13 Daams J L C, Villars P, Vucht J H N V. Atlas of crystal structure types for intermetallic phases[M]. Ohio: ASM International,1991:4146.
14 Brabders E A. Smithells metals reference book[M].6th ed. London: Pergramon Press,1983:135.
15 Zhao Y T, Li Z H, Dai Q X, et al. Interfacial structure of Al3Zrp/Al composites formed by Al-K2ZrF6 reaction system[J]. The Chinese Journal of Nonferrous Metals,2002(6):1184(in Chinese).
赵玉涛,李忠华,戴起勋,等.Al-K2ZrF6反应体系生成Al3Zrp/Al复合材料的界面结构[J].中国有色金属学报,2002(6):1184.
16 刘志林.合金价电子结构与成分设计[M].长春:吉林科学技术出版社,2002:15.
17 Li F, Zhu Q F, Li L, et al. Effect of pouring temperature on the primary Al3Zr phase in Al-5Zr master alloy[J]. Rare Metal Materials and Engineering,2015,44(8):2029(in Chinese).
李飞,朱庆丰,李磊,等.浇注温度对Al-5Zr中间合金初生Al3Zr相影响机理研究[J].稀有金属材料与工程,2015,44(8):2029.
18 刘志林,李志林,刘伟东.界面电子结构与界面性能[M].北京:科学出版社,2002:92.
[1] 刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
[2] 王运雷,张 杰,龚丽娟. 中间退火及成品退火速率对高压阳极铝箔微观组织的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1612-1617.
[3] 周婷婷, 王罡, 杨洋, 李遥, 帅茂兵. Bammann-Chiesa-Johnson粘塑性本构模型的参数识别方法与验证*[J]. 《材料导报》期刊社, 2017, 31(3): 75-79.
[4] 章震威, 王军丽, 张清龙, 史庆南. 等通道转角挤压制备超细晶材料的研究与发展[J]. 材料导报, 2017, 31(1): 116-125.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed