Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 116-125    https://doi.org/10.11896/j.issn.1005-023X.2017.01.016
  新材料新技术 |
等通道转角挤压制备超细晶材料的研究与发展
章震威1,王军丽2,张清龙1,史庆南1
1 昆明理工大学材料科学与工程学院,昆明 650093;
2 昆明理工大学分析测试研究中心,昆明 650093
Producing Ultrafine-grained Materials by Equal Channel Angular Pressing: A Review
ZHANG Zhenwei1, WANG Junli2, ZHANG Qinglong1, SHI Qingnan1
1 School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 2088KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 等通道转角挤压(Equal channel angular pressing, ECAP)是大塑性变形制备超细晶材料的方法之一,具有大晶粒尺寸的材料可以在室温下挤压达到超细晶尺度。从ECAP模具参数、工艺条件影响因素、模具及制备方法改进、细化机理、制备的超细晶材料组织稳定性及性能方面进行总结,并结合部分研究结果可知,ECAP模具正在不断被优化和改进,复合挤压技术不断出现,目前已实现超细晶材料的连续ECAP挤压制备技术。等通道转角挤压的晶粒细化主要是由于剪切力的作用和第二相粒子的作用,ECAP晶粒细化机理及组合工艺的研究是目前研究的热点。超细晶材料在不同领域的应用对其性能提出的更高要求,对其大塑性变形制备技术本身也是挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
章震威
王军丽
张清龙
史庆南
关键词:  大塑性变形  超细晶材料  等通道转角挤压  细化机理    
Abstract: Equal channel angular pressing is one of the methods to prepare ultrafine grained materials by sever plastic deformation. The materials with large grain size can be extruded at room temperature. This thesis summarized the mold parameters of ECAP, influence factors of process conditions, the improvement of mold and preparation method, refinement mechanism, microstructure stability and properties of manufacturing ultrafine grained materials. Combined with the part of the research results, it shows that the ECAP mold is constantly being improved and optimized and composite extrusion technologies has appeared. Nowadays, it makes continuous ultrafine grained ECAP technology come true. Grain refinement of ECAP is mainly due to shear stress and the effect of the second phase particles. ECAP grain refinement mechanism and combined technology have become a hot research to-pic. Higher application requirements of ultrafine grained materials are raised in different areas. It is also a challenge severe plastic deformation manufacture technology itself.
Key words:  severe plastic deformation    ultrafine-grained materials    equal channel angular pressing    refining mechanism
               出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TB376  
基金资助: 国家自然科学基金(51564032);云南省分析测试中心基金(2016M20152230080)
作者简介:  章震威:男,1993年生,硕士研究生,研究方向为金属大塑性变形 E-mail:422854000@qq.com 王军丽:通讯作者,女,1978年生,博士,教授,主要研究领域为材料加工与新材料制备技术 E-mail:64291434@qq.com
引用本文:    
章震威, 王军丽, 张清龙, 史庆南. 等通道转角挤压制备超细晶材料的研究与发展[J]. 材料导报, 2017, 31(1): 116-125.
ZHANG Zhenwei, WANG Junli, ZHANG Qinglong, SHI Qingnan. Producing Ultrafine-grained Materials by Equal Channel Angular Pressing: A Review. Materials Reports, 2017, 31(1): 116-125.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.016  或          http://www.mater-rep.com/CN/Y2017/V31/I1/116
1 Segal V M, Reznikov V I, Drobyshevskiy A E, et al. Plastic wor-king of metals by simple shear[J]. Russian Metall,1981,1:99.
2 Bian L P, Liang W, Ma J, et al.Effect of modified ECAP route on microstructure and mechanical property of Al-Mg2Siin-situ composite[J]. Chin J Nonferrous Met,2011,21(8):1841(in Chinese).
边丽萍,梁伟,马健,等.改进型ECAP路径对Al-Mg2Si原位复合材料组织与力学性能的影响[J].中国有色金属学报,2011,21(8):1841.
3 Nakashima K, Horita Z J, Nemoto M, et al. Influence of channel angular on the development of ultrafine grains in equal-channel angular pressing[J]. Acta Mater,1998,46:1589.
4 Lee S, Langdon T G. Influence of equal-channel angular pressing on the superplastic properties of commercial aluminum alloys[J]. Mater Res Soc Symp Proc,2000,601:359.
5 Ohishi K, Horita Z, Furukawa M, et al. Optimizing the rotation conditions for grain refinement in equal-channel angular pressing[J]. Metall Mater Trans A,1998,29:2011.
6 Iwahashi Y, Wang J, Hofita Z, et al. Principle of equal channel angular pressing for the processing of ultra-free grained materials[J]. Scripta Mater,1996,35:143.
7 Zhang Xu.The finite element simulation and investigation in equal channel angular pressing for pure Al[D]. Shengyang: Northeast University,2012(in Chinese).
张旭.纯铝等径角挤压有限元模拟及实验研究[D].沈阳:东北大学,2012.
8 Cheng X H, Jiang X M. Influence of friction resistance on the deformation of pure aluminum during equal channel angular extrusion processing[J]. J Shanghai Jiaotong University,2005,39(1):10(in Chinese).
程先华,江学明.摩擦阻力对纯铝在等径弯角挤压过程中变形的影响[J].上海交通大学学报,2005,39(1):10.
9 Cai G Y, Deng P H, et al. Finite element simulation of single ECAP effect of friction condition on high strength aluminum alloy[J]. Special Casting Nonferrous Alloys,2009,29(6):518(in Chinese).
蔡刚毅,邓鹏辉,等.摩擦条件对高强铝合金单次ECAP作用的有限元模拟[J].特种铸造及有色合金,2009,29(6):518.
10 Fang X Q, Li M Q, Ling Y Y. Finite element simulation of equal channel angular pressing of Ti-6Al-4V alloy[J]. Mater Eng,2007(5):57(in Chinese).
方晓强,李淼泉,林莺莺. Ti-6Al-4V钛合金等通道转角挤压的有限元模拟[J].材料工程,2007(5):57.
11 Shan A, Moon I G, Park J W. Estimation of friction during equal channel angular (ECA) pressing of aluminum alloys [J]. J Mater Process Technol,2002,122:255.
12 Jia P B, Yang X R, Liu X Y, et al.Finite element simulation and experimental vertification for the influence of friction coefficient on one-pass ECAP of commercially pure Zr with different cross sections[J]. Mater Rev:Res,2016,30(1):145(in Chinese).
贾鹏博,杨西荣,刘晓燕,等.摩擦系数对不同截面纯锆单道次ECAP变形影响的有限元模拟与实验验证[J].材料导报:研究篇,2016,30(1):145.
13 Horita Z, Fujinami T, Nemoto M, et al. Equal-channel angular pressing of commercial aluminum alloys: Grain refinement,thermal stability and tensile properties[J].Metall Mater Trans A,2000,31(3):691.
14 Jiang Y, Shi Q N, Wang L, et al. Effect of extrusion speed on microstructure of 7003 aluminum alloy by double equal channel angular pressing (D-ECAP)[J]. Heat Treat Met,2013,38(12):58(in Chinese).
姜义,史庆南,王璐,等.挤压速度对双通道等径角挤压7003铝合金组织的影响[J].金属热处理,2013,38(12):58.
15 Zhao J, Zhao X C, Yang X R, et al. Influence of extrusion speed on twins of commercially pure titanium processed by ECAP at room temperature[J]. J Mater Sci Eng,2011,29(6):906(in Chinese).
赵键,赵西成,杨西荣,等.挤压速度对工业纯钛室温ECAP变形孪晶的影响[J].材料科学与工程学报,2011,29(6):906.
16 Shin H D,Kim Y K.Effect of pressing temperature on microstructure and tensile behavior of low carbon steels processed by equal channel angular pressing[J]. Mater Sci Eng,2002,325(1):31.
17 Yamashita A, Yamagchi D, Horita Z, et al. Influence of pressing temperature on microstructural development in equal-channel angular pressing [J]. Mater Sci Eng A,2000,287:100.
18 Raab G I, Soshnikova E P, Valiev R Z. Influence of temperature and hydrostatic pressure during equal-channel angular pressing on the microstructure of commercial-purity Ti [J]. Mater Sci Eng A,2004,387-389:674.
19 Stolyarov V V, Zhu Y T, Alexandrov I V, et al. Influence of ECAP routes on the microstructure and properties of pure Ti[J]. Mater Sci Eng,2001,303(1-2):89.
20 Zhao X C,Wang X Y,Yang X R, et al. Microstructure and properties of TA 1 pure titanium processed by 8 ECAP passes using a 120° die at room temperature[J]. Rare Met Mater Eng,2011,40(1):28(in Chinese).
赵西成,王幸运,杨西荣,等.120°模具室温8道次ECAP变形TA1纯钛的组织与性能[J].稀有金属材料与工程,2011,40(1):28.
21 Shaeri M H, Shaeri M, Shaeri M, et al. Effect of ECAP temperature on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy[J].Prog Nat Sci: Mater Int,2016,26:182.
22 Yu Y D, Chu D S. Influence of different ECAP temperatures on mechanical properties of ZK60 Mg alloy[J]. Hot Work Technol,2012,41(19):27(in Chinese).
于彦东,初德胜.不同温度ECAP对ZK60合金力学性能的影响[J].热加工工艺,2012,41(19):27.
23 He Y B, Pan Q L, Liu X Y, et al. Microstructure and mechanical properties of ZK60 magnesium alloy produced by equal channel angular pressing[J]. Mater Eng,2011(6):32(in Chinese).
何运斌,潘清林,刘晓燕,等.ECAP法制备细晶ZK60镁合金的微观组织与力学性能[J].材料工程,2011(6):32.
24 Kim I, Kim J, Hyuk D. Effects of grain size and pressing speed on the deformation mode of commercially pure Ti during equal channel angular pressing [J]. Metall Mater Trans A,2003,34:1555.
25 Tang Y B, Suo T, Zhang B S, et al. Uniaxial compression behavior of equal channel angular pressing Al at wide temperature and strain rate range[J]. Trans Nonferrous Met Soc China,2014,24:2447.
26 Azushima A, Aoki K.Mechanical properties of ultrafine grained steel produced by repetitive cold side extrusion[J]. CIRP Annals Manuf Technol,2002,51(1):227.
27 Zhou Xiao. Research on the ultrafine grain of 6061 aluminum th-rough two-direction equal channel angular pressing[D]. Kunming: Kunming University of Science and Technology,2010(in Chinese).
周潇.双向等通道制备超细晶6061铝合金的研究[D].昆明:昆明理工大学,2010.
28 Lee J C, Seok H K, Suh J Y. Microstructural evolutions of the Al strip prepared by cold rolling and continuous equal channel angular pressing[J]. Acta Mater,2002,50(16):4005.
29 Naizabekov A B, Andreyachshenko V A, Kocich R. Study of deformation behavior, structure and mechanical properties of the AlSiMnFe alloy during ECAP-PBP[J]. Micron,2013,44:210.
30 Liu X J, Liu B, Jiang J X, et al. Study on device for continuous reciprocating ECAP[J]. Forging Stamping Technol,2014,39(5):96(in Chinese).
刘秀娟,刘白,姜俊侠,等.连续往复式等通道转角挤压装置的研究[J].锻压技术,2014,39(5):96.
31 Wang Shunqi. Research on structure optimization and extrusion process of equal channel angular pressing die[D]. Taiyuan: Taiyuan University of Science and Technology,2009(in Chinese).
王顺旗.等通道转角挤压模具结构优化及挤压工艺的研究[D].太原:太原理工大学,2009.
32 Kiyotaka Nakashima, Zenji Horita, Minoru Nemoto, et al. Development of a muti-pass facility for equal-channel angular pressing to high total strains[J]. Mater Sci Eng,2000,281:82.
33 Kang H G, Lee J P, Huh M Y, et al. Stability against coarsening in ultra-fine grained aluminum alloy AA 3103 sheet fabricated by continuous confined strip shearing[J]. Mater Sci Eng A,2008,486:470.
34 Jae Chul Lee, Hyun Kwang Seok, Jun Hyun Han, et al. Controlling the textures of the metal strips via the continuous confined strip shearing (C2S2) process[J]. Mater Res Bull,2001,36:997.
35 Xu S B, Zhao G Q, Ren X F, et al. Numerical investigation of aluminum deformation behavior in three-dimensional continuous confined strip shearing process [J]. Mater Sci Eng A,2008,476:281.
36 Han J H, Oh K H, Lee J C. Effect of accumulative strain on texture evolution in 1050 Al alloys processed by continuous confined strip shearing [J]. Mater Sci Eng A ,2004,387-389:240.
37 Mckenzie P W J, Lapovok R. ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016 Part 2: Mechanical properties and texture [J]. Acta Mater,2010,58(9):3212.
38 Luo Xu. Research on the properties and microstructure evolution of ultrafine grained aluminum alloy prepared by CECC[D].Kunming:Kunming University of Science of Technology,2009(in Chinese).
罗许.复合挤压制备超细晶铝合金及性能、组织演变的研究[D].昆明:昆明理工大学,2009.
39 Yang Zhiqiang. Research on finite element simulation of large plastic deformation combined with extrusion[D].Kunming: Kunming University of Science of Technology,2010(in Chinese).
杨智强.大塑性变形复合挤压有限元模拟研究[D].昆明:昆明理工大学,2010.
40 Tanski T, Snopinski P, Pakiela W, et al. Structure and properties of AlMg alloy after combination of ECAP and post-ECAP ageing[J]. Archives Civil Mechanical Eng,2016,16:325.
41 Wu Zhenjie. Aging behavior, microstructures and strength-ductility in 6000 series aluminum alloys processed by equal channel angular pressing[D]. Zhenjiang:Jiangsu University,2015(in Chinese).
吴振杰.等通道转角挤压6000系铝合金的时效特性、微观结构及其强韧性[D].镇江:江苏大学,2015.
42 Cheng X N, Song G, Mo J P, et al. Tensile properties of 2024 Al alloy processed by enhanced solid-solution and subsequent equal-channel angular pressing[J]. J Jiangsu University,2007,28(1):33(in Chinese).
程晓农,宋刚,莫纪平,等.强化固溶态2024铝合金ECAP加工后的拉伸性能[J].江苏大学学报,2007,28(1):33.
43 Goodrzy M H, Arabi H, Boutorabi M A, et al. The effects of room temperature ECAP and subsequent aging on mechanical properties of 2024 Al alloy[J]. J Alloys Compd,2014,585:753.
44 Raab G J, Valiev R Z, Lowe T C, et al. Continuous processing of ultrafine grained Al by ECAP-Conform[J]. Mater Sci Eng,2004,382:30.
45 Cheng Xu, Steven Schroeder, Patrick B Berbon, et al. Principles of ECAP-Conform as a continuous process for achieving grain refinement: Application to an aluminum alloy[J]. Acta Mater,2010,58:1379.
46 Fan S T, Xu X J. Effect of 400 ℃annealing on strength and dislocation strengthening of Q235 steel processed by equal-channel angular pressing[J]. J Jiangsu University,2012,33(3):342(in Chinese).
樊曙天,许晓静.400 ℃退火对ECAP形变Q235钢的强度和位错强化的影响[J].江苏大学学报,2012,33(3):342.
47 Zha M, Li Y J, Mathiesen R, et al. Microstructure, hardness, evolution and thermal stability of binary Al-7Mg alloy processed by ECAP with intermediate annealing[J]. Trans Nonferrous Met Soc China,2014,24:2301.
48 Zhang Z, Du Z Z, Wang J T, et al. Equal channel angular pressing and thermal-stability of 7475 aluminum alloy[J]. Nonferrous Met,2004,56(2):31(in Chinese).
张郑,杜忠泽,王经涛,等.7475铝合金ECAP变形及组织热稳定性[J].有色金属, 2004, 56(2): 31.
49 Park J Y, Lee D N. Deformation and annealing textures of equal-channel angular pressed 1050 A1 alloy strips[J]. Mater Sci Eng A,2008,497(1-2):395.
50 Li S, Gazder A A, Beyerlein I J, et al. Effect of processing route on microstructure and texture development in equal channel angular extrusion of interstitial-free steel[J]. Acta Mater,2006,54:1087.
51 Yoshida Y, Cisar L, Kamado S, et al. Effect of microstructure factors on tensile properties of an ECAE-processed AZ31 magnesium alloy[J]. Mater Sci Forum,2003,419-422:533.
52 Kilmametov A R, Alexandrov I V, Dubravinab A A. Texture analysis of nanostructured metals produced by severe plastic deformation[J]. Mater Sci Forum,2004,443:243.
53 Tsai M S, Sun P L, Kao P W , et al. Influence of severe plastic deformation on precipitation hardening in an Al-Mg-Si-Alloy[J]. Mater Trans,2009,50:771.
54 Wang S M, Sun K N, Liu R, et al. Effect of the second phase on grain refinement of 2A12 aluminum alloy by ECA pressing[J]. Mater Sci Technol,2007,15(1):115(in Chinese).
王素梅,孙康宁,刘睿,等.第二相粒子对ECAP挤压的2A12铝合金晶粒细化的影响[J].材料科学与工艺,2007,15(1):115.
55 Ma Jian. Microstructure and mechanical property of high Mg2SiAl-Mg-Si alloys by severe plastic deformation[D]. Taiyuan: Taiyuan University of Science and Technology,2010(in Chinese).
马健.强塑性变形条件下高Mg2Si含量Al-Mg-Si合金的组织与性能[D].太原:太原理工大学,2010.
56 Bian L P, Liang W, Ma J, et al. Effect of ECAP routine on microstructure and mechanical properties of Al-10Mg-4Si alloy[J].Rare Met Mater Eng,2010,39(6):360(in Chinese).
边丽萍,梁伟,马健,等.ECAP路径对Al-10Mg-4Si合金组织及力学性能的影响[J].稀有金属材料与工程,2010,39(6):360.
57 Li Xin, Jiang Jinghua, Zhao Yonghao, et al.Effect of equal-channel angular pressing and aging on corrosion behavior of ZK60 Mg alloy[J]. Trans Nonferrous Met Soc China,2015,25:3909.
58 He Y B, Pan Q L, Liu X Y, et al. Grain refinement mechanism of magnesium alloy during equal channel angular pressing process[J]. Chin J Nonferrous Met,2011,21(8):1785(in Chinese).
何运斌,潘清林,刘晓艳,等.镁合金等通道转角挤压过程中的晶粒细化机制[J].中国有色金属学报,2011,21(8):1785.
59 Yan K, Sun Y S, Bai J, et al. Effect of equal channel angular pres-sing on grain-refining mechanism of coarse-grained AZ31 magnesium alloy[J]. Hot Work Technol,2011,40(10):70(in Chinese).
严凯,孙杨善,白晶,等. ECAP对粗晶AZ31镁合金的晶粒细化机制的影响[J].热加工工艺,2011,40(10):70.
60 Cetlin P R, Aguilar M T P, Figueiredo R B, et al. Avoiding cracks and inhomogeneities in billets processed by ECAP[J]. J Mater Sci,2010,45(17):4561.
61 Kameyama T, Matsunaga T, Sato E, et al. Suppression of ambient-temperature creep in CP-Ti by cold-rolling[J]. Mater Sci Eng,2009,510-511:364.
62 Wu S D, An X H, Han W Z, et al. Microstructure evolution and mechanical properties of fcc metallic materials subjected to equal channel angular pressing[J]. Acta Metall Sinica,2010,46(3):257(in Chinese).
吴世丁,安详海,韩卫忠,等.等通道转角挤压过程中fcc金属的微观结构演化与力学性能[J].金属学报,2010,46(3):257.
63 Wang J M, Zhou K K, Lu J, et al. Influence of stacking fault energy on grain-refining during severe shear deforming[J]. Chin J Mechanical Eng,2008,44(11):126(in Chinese).
汪建敏,周孔亢,陆晋,等.层错能在剧烈剪切变形时对晶粒细化的影响[J]. 机械工程学报,2008,44(11):126.
64 Han W Z, Zhang Z F, Wu S D, et al. Nature of shear flow lines in equal-channel angular-pressed metals and alloys[J]. Philosophical Maga Lett,2007,87:735.
65 Fang D R, Zhang Z F, Wu S D, et al. Effect of equal channel angular pressing on tensile properties and fracture modes of casting Al-Cu alloys[J]. Mater Sci Eng,2006,426:305.
66 Yuan S C, Guo H Z, Zhao Z L, et al. Effect of equal channel angle pressing(ECAP) technology on microhardness of Ti-1023 alloy[J]. J Aeronautical Mater,2009,29(4):25(in Chinese).
袁士翀,郭鸿镇,赵张龙,等.等通道转角挤压(ECAP)工艺对Ti-1023合金显微硬度的影响[J].航空材料学报,2009,29(4):25.
67 Kim W J, Hong S I, Kim Y S, et al. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing[J]. Acta Mater,2013,51(11):3293.
68 Kang Z X, Peng Y H, Kong J, et al. Microstructure, structure and mechanical properties of Mg-1.5Mn-0.3Ce magnesium alloy deformed by equal channel angular pressing[J]. Rare Metal Mater Eng,2012,41(2):215(in Chinese).
康志新,彭勇辉,孔晶,等.等通道转角挤压变形Mg-1.5Mn-0.3Ce镁合金的组织、结构与力学性能[J].稀有金属材料与工程,2012,41(2):215.
69 Han Y F, Li J X, Huang G F, et al. Effect of ECAP numbers on microstructure and properties of titanium matrix composite[J]. Mater Des,2015,75:113.
[1] 李飞, 廖怡君, 王旭, 朱庆丰, 崔建忠. Zr元素对纯铝细化机理的电子理论研究[J]. 材料导报, 2018, 32(18): 3190-3194.
[2] 郭廷彪,李 琦,王 晨,张 锋, 丁雨田,贾 智,唐兴昌. 低温等通道转角挤压中定向凝固纯铜的组织及性能演变[J]. 《材料导报》期刊社, 2018, 32(10): 1650-1654.
[3] 雷若姗, 陈广润, 徐时清, 王焕平, 汪明朴. 大塑性变形工艺制备纳米晶过饱和固溶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 130-134.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed