Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 672-675    https://doi.org/10.11896/j.issn.1005-023X.2018.04.032
  计算模拟 |
FeB和Fe2B价电子结构与钢表面渗硼层硬化本质
刘伟东, 张旭, 屈华
辽宁工业大学材料科学与工程学院,锦州 121001
Valence Electron Structures of FeB and Fe2B and the Hardening Essence of Boronizing Layer of Steel Surface
LIU Weidong, ZHANG Xu, QU Hua
School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001
下载:  全 文 ( PDF ) ( 1202KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 依据EET理论,计算了FeB和Fe2B价电子结构并分析了它们与钢渗硼层硬化的关系。研究发现:渗硼表面改性后,钢表面硬度和耐磨性提高的根本原因在于FeB和Fe2B最强键的键合力远大于基体α-Fe最强键的键合力;FeB的硬度比Fe2B大的微观本质在于FeB相最强键的键合力、主键络连接键的键合力和共价电子密度分别比Fe2B的大27.12%、4.8%和3.66%;FeB相比Fe2B脆性大的微观本质在于FeB共价键空间分布更不均匀,FeB相主键络具有较强的共价性,而Fe2B相主键络具有较强的金属性;由于FeB相成键能力仅比Fe2B的成键能力大0.85%,因此优先形成的Fe2B相极易转变为FeB相,使得钢表面渗硼层的脆性增强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘伟东
张旭
屈华
关键词:  表面改性  渗硼层  FeB  Fe2B  价电子结构  硬化    
Abstract: Based on the empirical electron theory of solids and molecules (EET), the valence electron structures (VESs) of FeB and Fe2B were calculated, and then the relationship between them and hardening in boronizing layer of steel surface was analyzed. It is showed that after boronizing, the basic reason of the increase of hardness and abrasive resistance in steel surface lies in the binding forces of the strongest bond of FeB and Fe2B are far bigger than that of α-Fe in matrix. The hardness of FeB is bigger than that of Fe2B, which microscopic essence lies in the binding force of the strongest bond, the binding force of the main bond structure connection and the covalence density in FeB is 27.12%,4.8% and 3.66% bigger than that of Fe2B respectively. Compared with Fe2B, the covalence bond space distribution is more nonuniform of FeB while its main bond structure has stronger covalence but that of Fe2B has stronger metallicity, which is the basic reason that brittleness of FeB is bigger than that of Fe2B. The bonding power of FeB is only bigger than that of Fe2B 0.85%, so Fe2B priority to formed easily changes to FeB and lead to the brittleness increase in boronizing layer of steel surface.
Key words:  surface modification    boronizing layer    FeB    Fe2B    valence electron structure    hardening
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TG156.3  
基金资助: 辽宁省教育厅科学研究项目(L2015234); 辽宁省科技厅辽宁省科学技术计划项目(SY2016008)
引用本文:    
刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
LIU Weidong, ZHANG Xu, QU Hua. Valence Electron Structures of FeB and Fe2B and the Hardening Essence of Boronizing Layer of Steel Surface. Materials Reports, 2018, 32(4): 672-675.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.032  或          http://www.mater-rep.com/CN/Y2018/V32/I4/672
1 Mu Dong, Wang Qudong, Shen Baoluo. Research actuality of effect of boriding on microstructure and properties of steels surface[J].Materials Review A:Review Papers,2009,23(4):42(in Chinese).
慕东,王渠东,沈保罗.渗硼对钢铁表面组织与性能影响的研究现状[J].材料导报:综述篇,2009,23(4):42.
2 Tang Guangping, Huang Wenrong, Zhou Wenfeng. Birlttenent and contolrling measures of boirding layer[J].Materials Protection,2003,36(3):57(in Chinese).
汤光平,黄文荣,周文凤.渗硼层脆性及其控制措施[J].材料保护,2003,36(3):57.
3 Li Xuesong, Wu Hua, Wu Yi. Pack boronizing process and properties of the boride layer on 20CrMo steel[J].Heat Treatment of Me-tals,2009,34(5):57(in Chinese).
李雪松,吴化,吴一.20CrMo钢表面固体渗硼工艺及性能[J].金属热处理,2009,34(5):57.
4 Zhong Fenglan. The iron boride FeB in the electron theory[J].Chinese Science Bulletin,1995,40(17):1419.
5 Zhong Fenglan. Iron boride Fe2B in electron theory[J].Chinese Science Bulletin,1995,40(23):1968.
6 Li Musen, Hou Xurong, Cui Jianjun, et al. Physical essence of brittleness criterion K for borided layer[J].Transactions of Metal Heat Treatment,1995,16(1):43(in Chinese).
李木森,候绪荣,崔建军,等.渗硼层脆性判据K的物理本质[J].金属热处理学报,1995,16(1):43.
7 Li Musen, Fu Shaoli, Xu Wandong, et al. Valence electron structure of Fe2B phase and its eigen-brittleness[J].Transactions of Metal Heat Treatment,1995,31(5):201(in Chinese).
李木森,傅绍丽,徐万东,等.Fe2B相价电子结构及其本质脆性[J].金属学报,1995,31(5):201.
8 Li Musen, Jiang Jiang, Cui Jianjun. Revealing an eigen-brittleness of FeB phase from electronic scale[J].Heat Treatment of Metals,1996(6):12(in Chinese).
李木森,姜江,崔建军.从电子尺度揭示FeB相的本质脆性[J].金属热处理,1996(6):12.
9 Song Yuepeng, Feng Chengming, Xu Bin. Effect of micro-addition chromium on the valence electron structure of FeB phase[J].Tran-sactions of Materials and Heat Terament,2001,22(4):36(in Chinese).
宋月鹏,冯承明,许斌.微量铬元素对FeB相价电子结构的影响[J].材料热处理学报,2001,22(4):36.
10 Xu Juan, Chen Lin, Sun Zhongbo. Effect of chromium and lanthanum on brittleness of Fe2B phase[J].Hot Working Technology,2007,36(20):4(in Chinese).
徐娟,陈琳,孙忠波.Cr和La元素对Fe2B相脆性的影响[J].热加工工艺,2007,36(20):4.
11 张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993.
12 刘志林,李志林,刘伟东.界面价电子结构与界面性能[M].北京:科学出版社,2002.
13 Liu Weidong, Liu Zhilin, Qu Hua. Calculation of valence electron structures in alloying γ-TiAl and its mechanical properties[J]. Rare Metal Materials and Engineering,2003,32(11):902(in Chinese).
刘伟东,刘志林,屈华.合金γ-TiAl价电子结构的计算及其力学性能[J].稀有金属材料与工程,2003,32(11):902.
14 Sun Zhongbo. Research on properties of Fe2B and it’s improvement in Fe based alloy[D].Tianjin:Hebei University of Technology,2007(in Chinese).
孙忠波.Fe2B相在Fe基合金中性质及改性的研究[D].天津:河北工业大学,2007.
[1] 孙朋朋, 闵娜, 左鹏鹏, 吴晓春. 7Cr5Mo2V冷作模具钢回火特性研究[J]. 材料导报, 2019, 33(z1): 377-381.
[2] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[3] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[4] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[5] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[6] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[7] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[8] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[9] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[10] 李晓琴, 杨潇, 丁祖德, 申林方, 杜茜. 基于UDEM-ACE方法的ECC配合比优化设计[J]. 材料导报, 2019, 33(14): 2354-2361.
[11] 巴奇楠, 宋仁伯, 冯一帆, 李论. 表面爆炸处理后的ZGMn13Cr2钢的冲击磨损性能及硬化机理[J]. 材料导报, 2019, 33(10): 1712-1716.
[12] 安小雪, 李勇, 王福, 王昭东, 邸洪双. 气垫式预时效工艺对6016铝合金汽车板性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1300-1305.
[13] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[14] 沈海洋, 王正洲. 钢渣的表面改性及其在橡胶中应用研究[J]. 材料导报, 2018, 32(6): 1000-1003.
[15] 吴家宇, 李丹, 康龙, 冉奋. 电化学诱导表面引发原子转移自由基聚合构筑离子型聚醚砜膜功能表面[J]. 《材料导报》期刊社, 2018, 32(4): 549-554.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed