Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 672-675    https://doi.org/10.11896/j.issn.1005-023X.2018.04.032
  计算模拟 |
FeB和Fe2B价电子结构与钢表面渗硼层硬化本质
刘伟东, 张旭, 屈华
辽宁工业大学材料科学与工程学院,锦州 121001
Valence Electron Structures of FeB and Fe2B and the Hardening Essence of Boronizing Layer of Steel Surface
LIU Weidong, ZHANG Xu, QU Hua
School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001
下载:  全 文 ( PDF ) ( 1202KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 依据EET理论,计算了FeB和Fe2B价电子结构并分析了它们与钢渗硼层硬化的关系。研究发现:渗硼表面改性后,钢表面硬度和耐磨性提高的根本原因在于FeB和Fe2B最强键的键合力远大于基体α-Fe最强键的键合力;FeB的硬度比Fe2B大的微观本质在于FeB相最强键的键合力、主键络连接键的键合力和共价电子密度分别比Fe2B的大27.12%、4.8%和3.66%;FeB相比Fe2B脆性大的微观本质在于FeB共价键空间分布更不均匀,FeB相主键络具有较强的共价性,而Fe2B相主键络具有较强的金属性;由于FeB相成键能力仅比Fe2B的成键能力大0.85%,因此优先形成的Fe2B相极易转变为FeB相,使得钢表面渗硼层的脆性增强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘伟东
张旭
屈华
关键词:  表面改性  渗硼层  FeB  Fe2B  价电子结构  硬化    
Abstract: Based on the empirical electron theory of solids and molecules (EET), the valence electron structures (VESs) of FeB and Fe2B were calculated, and then the relationship between them and hardening in boronizing layer of steel surface was analyzed. It is showed that after boronizing, the basic reason of the increase of hardness and abrasive resistance in steel surface lies in the binding forces of the strongest bond of FeB and Fe2B are far bigger than that of α-Fe in matrix. The hardness of FeB is bigger than that of Fe2B, which microscopic essence lies in the binding force of the strongest bond, the binding force of the main bond structure connection and the covalence density in FeB is 27.12%,4.8% and 3.66% bigger than that of Fe2B respectively. Compared with Fe2B, the covalence bond space distribution is more nonuniform of FeB while its main bond structure has stronger covalence but that of Fe2B has stronger metallicity, which is the basic reason that brittleness of FeB is bigger than that of Fe2B. The bonding power of FeB is only bigger than that of Fe2B 0.85%, so Fe2B priority to formed easily changes to FeB and lead to the brittleness increase in boronizing layer of steel surface.
Key words:  surface modification    boronizing layer    FeB    Fe2B    valence electron structure    hardening
出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TG156.3  
基金资助: 辽宁省教育厅科学研究项目(L2015234); 辽宁省科技厅辽宁省科学技术计划项目(SY2016008)
引用本文:    
刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
LIU Weidong, ZHANG Xu, QU Hua. Valence Electron Structures of FeB and Fe2B and the Hardening Essence of Boronizing Layer of Steel Surface. Materials Reports, 2018, 32(4): 672-675.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.032  或          https://www.mater-rep.com/CN/Y2018/V32/I4/672
1 Mu Dong, Wang Qudong, Shen Baoluo. Research actuality of effect of boriding on microstructure and properties of steels surface[J].Materials Review A:Review Papers,2009,23(4):42(in Chinese).
慕东,王渠东,沈保罗.渗硼对钢铁表面组织与性能影响的研究现状[J].材料导报:综述篇,2009,23(4):42.
2 Tang Guangping, Huang Wenrong, Zhou Wenfeng. Birlttenent and contolrling measures of boirding layer[J].Materials Protection,2003,36(3):57(in Chinese).
汤光平,黄文荣,周文凤.渗硼层脆性及其控制措施[J].材料保护,2003,36(3):57.
3 Li Xuesong, Wu Hua, Wu Yi. Pack boronizing process and properties of the boride layer on 20CrMo steel[J].Heat Treatment of Me-tals,2009,34(5):57(in Chinese).
李雪松,吴化,吴一.20CrMo钢表面固体渗硼工艺及性能[J].金属热处理,2009,34(5):57.
4 Zhong Fenglan. The iron boride FeB in the electron theory[J].Chinese Science Bulletin,1995,40(17):1419.
5 Zhong Fenglan. Iron boride Fe2B in electron theory[J].Chinese Science Bulletin,1995,40(23):1968.
6 Li Musen, Hou Xurong, Cui Jianjun, et al. Physical essence of brittleness criterion K for borided layer[J].Transactions of Metal Heat Treatment,1995,16(1):43(in Chinese).
李木森,候绪荣,崔建军,等.渗硼层脆性判据K的物理本质[J].金属热处理学报,1995,16(1):43.
7 Li Musen, Fu Shaoli, Xu Wandong, et al. Valence electron structure of Fe2B phase and its eigen-brittleness[J].Transactions of Metal Heat Treatment,1995,31(5):201(in Chinese).
李木森,傅绍丽,徐万东,等.Fe2B相价电子结构及其本质脆性[J].金属学报,1995,31(5):201.
8 Li Musen, Jiang Jiang, Cui Jianjun. Revealing an eigen-brittleness of FeB phase from electronic scale[J].Heat Treatment of Metals,1996(6):12(in Chinese).
李木森,姜江,崔建军.从电子尺度揭示FeB相的本质脆性[J].金属热处理,1996(6):12.
9 Song Yuepeng, Feng Chengming, Xu Bin. Effect of micro-addition chromium on the valence electron structure of FeB phase[J].Tran-sactions of Materials and Heat Terament,2001,22(4):36(in Chinese).
宋月鹏,冯承明,许斌.微量铬元素对FeB相价电子结构的影响[J].材料热处理学报,2001,22(4):36.
10 Xu Juan, Chen Lin, Sun Zhongbo. Effect of chromium and lanthanum on brittleness of Fe2B phase[J].Hot Working Technology,2007,36(20):4(in Chinese).
徐娟,陈琳,孙忠波.Cr和La元素对Fe2B相脆性的影响[J].热加工工艺,2007,36(20):4.
11 张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993.
12 刘志林,李志林,刘伟东.界面价电子结构与界面性能[M].北京:科学出版社,2002.
13 Liu Weidong, Liu Zhilin, Qu Hua. Calculation of valence electron structures in alloying γ-TiAl and its mechanical properties[J]. Rare Metal Materials and Engineering,2003,32(11):902(in Chinese).
刘伟东,刘志林,屈华.合金γ-TiAl价电子结构的计算及其力学性能[J].稀有金属材料与工程,2003,32(11):902.
14 Sun Zhongbo. Research on properties of Fe2B and it’s improvement in Fe based alloy[D].Tianjin:Hebei University of Technology,2007(in Chinese).
孙忠波.Fe2B相在Fe基合金中性质及改性的研究[D].天津:河北工业大学,2007.
[1] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[2] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[3] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[4] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[5] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[6] 刘源, 寇浩南, 何怡清, 尤瑞昶, 张鑫, 滕居珩, 李尧, 张凤英. 增材制造316L不锈钢组织结构特征与硬化机理[J]. 材料导报, 2024, 38(3): 22060103-6.
[7] 侯娟, 刘慧, 陈亮, 闵师领, 蒋梦蕾. 选区激光熔化成形304L不锈钢氦泡长大与辐照硬化行为[J]. 材料导报, 2024, 38(2): 22050298-6.
[8] 全琪炜, 刘向兵, 赵文增, 吴奕初, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 尹建. Xe离子辐照后Zr-4和Zr-1Nb合金的力学和耐腐蚀性能研究[J]. 材料导报, 2024, 38(18): 23020010-5.
[9] 张超, 张子龙, 黄伟, 潘阿馨, 赖志超, 吴天赐, 黄醒东. 高压作用下水泥基粉末材料的接触硬化研究综述[J]. 材料导报, 2024, 38(16): 23010046-9.
[10] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[11] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[12] 金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
[13] 乔永丰, 雷玉成, 姚奕强, 朱强. 坡口形状对CLAM钢焊缝抗辐照损伤性能的影响[J]. 材料导报, 2024, 38(10): 22100080-8.
[14] 朱艳春, 邵珠彩, 罗媛媛, 黄志权, 牛勇, 秦建平. Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究[J]. 材料导报, 2023, 37(5): 21070259-6.
[15] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed