Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22120030-8    https://doi.org/10.11896/cldb.22120030
  无机非金属及其复合材料 |
基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征
金磊源1, 胡芳坤1, 姜晓娇1, 夏立1, 刘冉1, 徐佳乐1, 涂秋芬1,2,*, 熊开琴2
1 西南交通大学材料科学与工程学院,材料先进技术教育部重点实验室,成都 610031
2 西南交通大学医学院,生物医学工程研究院,成都 610031
Preparation and Characterization of Multifunctional Vascular Stent Coating Based on Notch Signal Pathway Inhibitor
JIN Leiyuan1, HU Fangkun1, JIANG Xiaojiao1, XIA Li1, LIU Ran1, XU Jiale1, TU Qiufen1,2,*, XIONG Kaiqin2
1 Key Laboratory of Advanced Technologies of Materials of Ministry of Education, College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2 Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 42245KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 炎症反应贯穿动脉粥样硬化(AS)全过程,且与AS病变部位血管支架植入后的一系列不良事件高度相关,包括支架内再狭窄(ISR)、晚期血栓(LST)以及支架内新生动脉粥样硬化(ISNA)等。在诸多炎性疾病(包括AS)的发生及进展过程中,Notch信号通路均被异常激活。因此,Notch信号通路抑制剂(NSPI)的装载有望减轻炎症,进而缓解支架植入并发症。基于此,本工作提出了以聚乳酸-羟基乙酸共聚物(PLGA)为载体,采用超声雾化喷涂法将Notch信号通路抑制剂RO4929097装载于支架表面的改性策略,构建NSPI/PLGA多功能血管支架。研究结果表明,NSPI/PLGA血管支架的RO4929097有效释放长达30 d,可同时实现抑制炎症反应、促进内皮细胞增殖和抗平滑肌细胞增殖以及抗凝血等多种功能,在介入治疗领域具有极大的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金磊源
胡芳坤
姜晓娇
夏立
刘冉
徐佳乐
涂秋芬
熊开琴
关键词:  动脉粥样硬化  血管支架  炎症  Notch信号通路抑制剂  超声雾化喷涂技术  表面改性    
Abstract: Inflammatory reaction runs through the whole process of atherosclerosis (AS), and is highly related to a series of adverse events after vascular stent implantation, including in stent restenosis (ISR), late stent thrombosis (LST) and in stent neoatherosclerosis (ISNA) and so on. In many inflammatory diseases (including AS), Notch signaling pathway is abnormally activated. Therefore, the loading of Notch signaling pathway inhibitor (NSPI) is expected to reduce inflammation and then alleviate the complications of stent implantation. Herein, we proposed a modification strategy, using poly (lactic acid glycolic acid) copolymer (PLGA) as the carrier to load RO4929097, Notch signal pathway inhibitor, the surface of stent by ultrasonic atomization spraying to construct the NSPI/PLGA multi-functional vascular stent. The results show that NSPI/PLGA vascular stent can effectively release RO4929097 for up to 30 d, and can simultaneously inhibit inflammation, promote endothelial cell proliferation, anti-smooth muscle cell proliferation and anticoagulation. So this strategy has great potential in the field of interventional therapy.
Key words:  atherosclerosis    vascular stent    inflammation    Notch signaling pathway inhibitor    ultrasonic atomization spraying    surface modification
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  O647  
通讯作者:  *涂秋芬,西南交通大学材料科学与工程学院副教授,2007年毕业于四川大学获得博士学位,2007—2010年在西南交通大学从事博士后相关研究。研究方向包括生物材料表界面、血液接触类器械研发、氢分子医学等。tuqiufen@swjtu.edu.cn   
作者简介:  金磊源,西南交通大学材料科学与工程专业硕士研究生,研究方向是血液接触材料的表面改性方法。
引用本文:    
金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
JIN Leiyuan, HU Fangkun, JIANG Xiaojiao, XIA Li, LIU Ran, XU Jiale, TU Qiufen, XIONG Kaiqin. Preparation and Characterization of Multifunctional Vascular Stent Coating Based on Notch Signal Pathway Inhibitor. Materials Reports, 2024, 38(12): 22120030-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120030  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22120030
1 Roth G A, Mensah G A, Fuster V. Journal of the American College of Cardiology, 2020, 76(25), 2980.
2 Addetia K, Harb S C, Hahn R T, et al. JACC Cardiovasc Imaging, 2019, 12(4), 622.
3 Mouthuy P A, Snelling S J B, Dakin S G, et al. Biomaterials, 2016, 109, 55.
4 Niccoli G, Montone R A, Sabato V, et al. Circulation, 2018, 138(16), 1736.
5 Libby P, Ridker P M, Maseri A. Circulation, 2002, 105(9), 1135.
6 Gallo R, Padurean A, Jayaraman T, et al. Circulation, 1999, 99(16), 2164.
7 Kaldirim M, Lang A, Pfeiler S, et al. Frontiers in Cardiovascular Medicine, 2022, 9, 907348.
8 Sun R Z, Fan Y, Liang X, et al. BioMed Research International, 2018, 2018, 1010248.
9 Habib A, Karmali V, Polavarapu R, et al. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33(10), 2425.
10 Mauri L, Hsieh W H, Massaro J M, et al. The New England Journal of Medicine, 2007, 356(10), 1020.
11 Fiúza U M, Arias A M. The Journal of Endocrinology, 2007, 194(3), 459.
12 Vieceli D S F, Fortini F, Aquila G, et al. Frontiers in Immunology, 2019, 10, 1130.
13 Wei K, Korsunsky I, Marshall J L, et al. Nature, 2020, 582, 259.
14 Tindemans I, van Schoonhoven A, KleinJan A, et al. The Journal of Clinical Investigation, 2020, 130(7), 3576.
15 Arumugam T V, Baik S H, Balaganapathy P, et al. Progress in Neuro-biology, 2018, 165-167, 103.
16 Hildebrand D, Uhle F, Sahin D, et al. Frontiers in Cellular and Infection Microbiology, 2018, 8, 241.
17 Lin Q Q, Zhao J, Zheng C G, et al. European Review for Medical and Pharmacological Sciences, 2018, 22(19), 6485.
18 Aoyama T, Takeshita K, Kikuchi R, et al. Biochemical and Biophysical Research Communications, 2009, 383(2), 216.
19 Fukuda D, Aikawa E, Swirski F K, et al. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(27), 1868.
20 Nakano T, Fukuda D, Koga J, et al. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36(10), 2038.
21 Aguayo-Ortiz R, Guzmán-Ocampo D C, Dominguez L. ChemMedChem, 2019, 14(10), 1005.
22 Singla D K, Wang J, Singla R. Canadian Journal of Physiology and Pharmacology, 2017, 95(3), 288.
23 Keewan E, Naser S A. Cells, 2020, 9(1), 111.
24 Liu Z J, Xiao M, Balint K, et al. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2006, 20(7), 1009.
25 Li L, Wei C, Kim I K, et al. Hypertension, 2014, 63(6), 1260.
26 MacKenzie F, Duriez P, Wong F, et al. The Journal of Biological Che-mistry, 2004, 279(12), 11657.
27 Leslie J D, Ariza-McNaughton L, Bermange A L, et al. Development (Cambridge, England), 2007, 134(5), 839.
28 Wu J R, Yeh J L, Liou S F, et al. International Journal of Biological Sciences, 2016, 12(9), 1063.
29 Sweeney C, Morrow D, Birney Y A. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2004, 18(12), 1421.
30 Morrow D, Guha S, Sweeney C, et al. Circulation Research, 2008, 103(12), 1370.
31 Liu G, Liu G, Chatterjee M, et al. Cellular Physiology and Biochemistry:International Journal of Experimental Cellular Physiology, Biochemistry, 2016, 38(2), 726.
32 Chaurasia S N, Ekhlak M, Kushwaha G. Elife, 2022, 11, 79590.
33 van Es J H, van Gijn M E, Riccio O, et al. Nature, 2005, 435(7044), 959.
34 Ridgway J, Zhang G, Wu Y, et al. Nature, 2006, 444(7122), 1083.
35 Cao L, Arany P R, Wang Y S, et al. Biomaterials, 2009, 30(25), 4085.
36 Hecker J F, Scandrett L A. Journal of Biomedical Materials Research, 1985, 19(4), 381.
37 Cui H, Wang W, Shi L, et al. Small Methods, 2020, 4(12), 2000573.
38 Noseda M, Chang L, McLean G, et al. Molecular and Cellular Biology, 2004, 24(20), 8813.
39 Boucher J, Gridley T, Liaw L. Frontiers in Physiology, 2012, 3, 81.
40 Caolo V, Schulten H M, Zhuang Z W, et al. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31(5), 1059.
41 Yang H, Zheng S, Mao Y, et al. Clinical and Experimental Immunology, 2016, 183(2), 280.
42 Singla R D, Wang J, Singla D K. American Journal of Physiology Heart & Circulatory Physiology, 2014, 307(11), 1634.
43 Singla D K, Wang J, Singla R. Canadian Journal of Physiology and Pharmacology, 2017, 95(3), 288.
44 Binesh A, Devaraj S N, Halagowder D. Journal of Cellular Physiology, 2019, 234(5), 7040.
45 Sandow S L, Haddock R E, Hill C E, et al. Clinical and Experimental Pharmacology & Physiology, 2009, 36(1), 67.
46 Rostama B, Peterson S M, Vary C P, et al. Vascul Pharmacol, 2014, 63(2), 97.
47 Bhattacharyya A, Lin S, Sandig M, et al. Tissue Engineering: Part A, 2014, 20(7-8), 1175.
[1] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[2] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[3] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[4] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[5] 易荣, 王法衡, 刘永财, 李涤尘, 刘亚雄. 聚醚醚酮的表面改性策略综述[J]. 材料导报, 2023, 37(11): 21070057-12.
[6] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[7] 梁朝, 李茹春, 李春全, 孙志明, 陈珍明, 郑水林. 硅酸钙表面有机改性和形貌对填充PP复合材料力学性能的影响及机理[J]. 材料导报, 2022, 36(23): 21080298-8.
[8] 鲁春驰, 王影, 王东征. 涂布正极表面丝网印刷氧化锌颗粒对锂离子电池性能的影响[J]. 材料导报, 2022, 36(21): 21050056-5.
[9] 郑皓华, 邓雅洁, 吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报, 2022, 36(19): 21110079-5.
[10] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[11] 李曼曼, 冯峰. 基于中性粒细胞的分子影像探针研究进展[J]. 材料导报, 2021, 35(Z1): 507-512.
[12] 刘莹, 杨俊杰, 易艳良, 张治国, 王小健, 李卫, 周圣丰. 抗菌不锈钢的抗菌原理、常规加工与增材制造[J]. 材料导报, 2021, 35(23): 23097-23105.
[13] 高育欣, 刘明, 曾超, 王福涛, 王鹏, 叶子, 张磊. 机制砂表面改性技术研究与应用[J]. 材料导报, 2021, 35(22): 22072-22078.
[14] 于桐, 邵文尧, 洪专, 吴晨溥, 沈路钫, 谢全灵. 石墨烯量子点在分离膜材料中的应用研究进展[J]. 材料导报, 2021, 35(21): 21143-21150.
[15] 郭竟尧, 侯显斌, 魏钰坤, 戴乐阳, 廖海峰, 孙迪. 纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能[J]. 材料导报, 2021, 35(20): 20011-20015.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed