Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20011-20015    https://doi.org/10.11896/cldb.20080317
  无机非金属及其复合材料 |
纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能
郭竟尧1,2, 侯显斌1,2, 魏钰坤1,2, 戴乐阳1,2, 廖海峰1,2, 孙迪1,2
1 集美大学轮机工程学院,福建省船舶与海洋工程重点实验室,厦门 361021
2 集美大学福建航运研究院,厦门 361021
Preparation and Tribological Properties of Nano-Calcium Metaborate/Reduced Graphene Lubricant Additive
GUO Jingyao1,2, HOU Xianbin1,2, WEI Yukun1,2, DAI Leyang1,2, LIAO Haifeng1,2, SUN Di1,2
1 Fujian Provincial Key Laboratory of Naval Architecture and Ocean Engineering, School of Marine Engineering, Jimei University, Xiamen 361021, China
2 Fujian Shipping Research Institute of Jimei University, Xiamen 361021, China
下载:  全 文 ( PDF ) ( 4665KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究表面改性纳米偏硼酸钙/还原石墨烯润滑添加剂的合成方法,以偏硼酸钙、还原石墨烯为原料,油酸为修饰剂,利用等离子体辅助球磨制备纳米偏硼酸钙/还原石墨烯复合粉体,并测试其摩擦学性能。采用扫描电镜、透射电镜、X射线衍射仪和红外光谱仪对纳米偏硼酸钙/还原石墨烯复合粉体进行形貌观察;采用形状测量激光显微镜、扫描电镜对摩擦副表面进行测试;采用MOA Ⅱ油液分析光谱仪对摩擦油样进行检测。结果表明:在钢球机械研磨和等离子体热效应的耦合作用下,等离子体辅助球磨10 h的偏硼酸钙与还原石墨烯继续球磨10 h后,被细化为10 nm左右的颗粒状,并均匀地负载于还原石墨烯上。等离子体快速加热使得偏硼酸钙粉体表面发生热爆,部分偏硼酸钙飞溅在还原石墨烯上,并随即被其包裹为球状复合结构。等离子体辅助球磨10 h为偏硼酸钙表面引入羧基基团,并在后续球磨中与还原石墨烯表面的羟基发生酯化反应,原位完成油酸对偏硼酸钙和还原石墨烯的表面改性,使得纳米偏硼酸钙/还原石墨烯复合粉体在5W-40型机油中具有良好的分散性。在摩擦过程中,比表面积大的还原石墨烯不断吸附在摩擦表面,同时被还原石墨烯包裹为球状的纳米偏硼酸钙粒子,使摩擦副表面产生多活动中心的滚动摩擦,从而有效改进复合油的减摩抗磨性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭竟尧
侯显斌
魏钰坤
戴乐阳
廖海峰
孙迪
关键词:  纳米偏硼酸钙/还原石墨烯  润滑添加剂  等离子体辅助球磨  表面改性  摩擦学性能    
Abstract: In order to study the preparation of surface modified nano-calcium metaborate/reduced graphene lubricant additives, nano-calcium metaborate/reduced graphene composite powders were prepared by plasma assisted ball milling with calcium metaborate and reduced graphene as raw materials and oleic acid as modifier, thier tribological properties were tested. The morphologies of nano-calcium metaborate/reduced graphene composites were observed by scanning electron microscope, transmission electron microscope, X-ray diffractometer and infrared spectrometer. The surface of the friction pair was tested by shape measuring laser microscope and scanning electron microscope. Oil samples were detected by MOA Ⅱ oil analysis spectrometer. The results indicated that under the synergistic effect of ball milling and plasma heat effect, the calcium metaborate powder pre-milled for 10 h were refined to about 10 nm and uniformly loaded on the reduced grapheme after subsequent assisted ball milling for 10 h. The surface of calcium metaborate particles was heated rapidly by plasma and thermal explosion was caused, so part of the calcium metaborate powder splashed on the reduced graphene, which was then coated into a spherical composite structure. Plasma assisted ball milling introduced carboxyl groups on the surface of calcium metaborate after 10 h pre-milling and conducted an ester reaction with the hydroxyl group on the surface of reduced grapheme during subsequent 10 h milling. The surface modification of calcium metaborate and reduced graphene by oleic acid was in-situ completed successfully, and the prepared nano-calcium metaborate/reduced graphene composite powders had good dispersion in 5w-40 base oil. In the process of friction, the reduced graphene adsorbed on the friction surface due to its large specific surface area, and spherical nano-calcium metaborate coated by reduced graphene made the rolling friction of multi-activity centers on the friction pair surface, thereby the anti-friction and anti-wear performance of the composite oil was effectively improved.
Key words:  nano-calcium metaborate/reduced graphene    lubricant additive    plasma assisted ball milling    surface modification    tribological properties
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TB383  
基金资助: 国家自然科学基金(51779103);福建省自然科学基金(2021J01848;2018J01498);集美大学福建航运研究院开放课题基金
通讯作者:  daileyang@jmu.edu.cn   
作者简介:  郭竟尧,集美大学轮机工程学院硕士研究生,主要研究纳米复合润滑添加剂及其在轮机工程领域的应用。
戴乐阳,集美大学轮机工程学院教授,博士研究生导师。2006年于华南理工大学材料加工工程专业取得博士学位。在国内外学术期刊发表论文40余篇,授权国家发明专利8项,主要研究方向为:轮机摩擦磨损预防与控制、海洋腐蚀与防护、轮机故障诊断等。
引用本文:    
郭竟尧, 侯显斌, 魏钰坤, 戴乐阳, 廖海峰, 孙迪. 纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能[J]. 材料导报, 2021, 35(20): 20011-20015.
GUO Jingyao, HOU Xianbin, WEI Yukun, DAI Leyang, LIAO Haifeng, SUN Di. Preparation and Tribological Properties of Nano-Calcium Metaborate/Reduced Graphene Lubricant Additive. Materials Reports, 2021, 35(20): 20011-20015.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080317  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20011
1 Yan X P, Li Z X, Zhang Y L, et al. China Mechanical Engineering,2013,24(10),1413(in Chinese).
严新平,李志雄,张月雷,等.中国机械工程,2013,24(10),1413.
2 Guo Z W,Yuan C Q, Bai X Q, et al. Chinese Journal of Mechanical Engineering,2018,31(3),158.
3 Wang X, Li Y, Liu J S, et al. Acta Petrolei Sinica,2018,34(2),229.
4 Liu X B. Study on Graphene Lubricant Additive and Its Tribological Pro-perties on Internal Combustion Engine. Master’s Thesis, Tianjin University, China,2017(in Chinese).
刘向波.石墨烯润滑油添加剂及其内燃机摩擦学性能研究.硕士学位论文,天津大学,2017.
5 Liñeira D R J M, López E R, Fernández J, et al. Journal of Molecular Liquids,2019,274,568.
6 Patel J, Kiani A. Lubricants,2019,7(2),11.
7 Qiao Y L, Zhao H C, Cui Q S, et al. Materials Reports A:Review Papers,2013,27(19),34(in Chinese).
乔玉林,赵海朝,崔庆生,等.材料导报:综述篇,2013,27(19),34.
8 Feng Y H, Fang J H, Wu J, et al. Surface Technology,2019,48(12),189(in Chinese).
冯彦寒,方建华,吴江,等.表面技术,2019,48(12),189.
9 Ba Z W, Huang G W, Qiao D, et al. Tribology,2019,39(2),140(in Chinese).
巴召文,黄国威,乔旦,等.摩擦学学报,2019,39(2),140.
10 Wu B, Song H, Li C, et al. Tribology International,2020,141,105951.
11 Ji X B, Chen Y X, Du Q L. Lubrication Engineering,2015,40(4),58(in Chinese).
纪献兵,陈银霞,杜庆丽.润滑与密封,2015,40(4),58.
12 Yang T F, Wang X B, Sen M, et al. Industrial Lubrication and Tribology,2018,70(1),105.
13 Li J S, Hao L F, Xu X H, et al. China Surface Engineering,2010,23(3),29(in Chinese).
李久盛,郝利峰,徐小红,等.中国表面工程,2010,23(3),29.
14 戴乐阳,孟荣刚,陈景锋,等.中国专利,ZL201410068071.5,2015-05-06.
15 Lang C G, Ouyang L Z, Yang L L, et al. International Journal of Hydrogen Energy,2018,43(36),17346.
16 Yang X P, Dai L Y, Zeng M Q, et al. Materials Reports,2010,24(S1),320(in Chinese).
杨小平,戴乐阳,曾美琴,等.材料导报,2010,24(S1),320.
17 Yan J, Dai L Y, Meng R G, et al. Tribology,2016,36(1),20(in Chinese).
闫锦,戴乐阳,孟荣刚,等.摩擦学学报,2016,36(1),20.
18 Zhu M, Lu Z C, Hu R Z, et al. Acta Metallurgica Sinica,2016,52(10),1239(in Chinese).
朱敏,鲁忠臣,胡仁宗,等.金属学报,2016,52(10),1239.
19 Ji X B,Chen Y X. Lubrication Engineering,2015,40(7),75(in Chinese).
纪献兵,陈银霞.润滑与密封,2015,40(7),75.
20 Yang M N, Fan S L, Huang H Y, et al. International Journal of Biological Macromolecules, 2020,156,280.
21 Ma D Y, Wang C M, Li X X, et al. Acta Photonica Sinica,2018,47(3),69(in Chinese).
马德跃,王成名,李晓霞,等.光子学报,2018,47(3),69.
22 Xu L H, Zhang Y, Zhang D K, et al. Industrial Lubricationand Tribology,2018,70(9),1684.
23 Kang Y. Acetaldehyde Acetic Acid Chemical Industry,2014(11),25(in Chinese).
康永.乙醛醋酸化工,2014(11),25.
24 Pu J B, Wang L P, Xue Q J. Tribology,2014,34(1).93(in Chinese).
蒲吉斌,王立平,薛群基.摩擦学学报,2014,34(1),93.
25 Adams J H. Lubrication Engineering,1977,33(5),241.
[1] 王永欣, 胡艺纹, 赵海超, 李金龙, 王春婷, 毛金明, 王立平, 薛群基. 石墨烯基水润滑添加剂研究进展[J]. 材料导报, 2021, 35(19): 19055-19061.
[2] 尹艳丽, 于鹤龙, 王红美, 魏敏, 史佩京, 白志民, 张伟, 徐滨士. 表面改性海泡石纳米纤维作为润滑油添加剂的摩擦学行为[J]. 材料导报, 2021, 35(14): 14017-14024.
[3] 朱志强, 王庆平, 闵凡飞, 薛婷婷, 卢春阳, 刘玉新. SiCp/Al复合材料界面调控研究进展[J]. 材料导报, 2021, 35(13): 13139-13147.
[4] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[5] 李晓雨, 李翠玉, 苏瑞. 多巴胺掺杂碳纳米管对芳纶纤维界面性能的影响[J]. 材料导报, 2020, 34(Z2): 562-566.
[6] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[7] 时运, 胡荣祥, 马骏, 杜培松, 陈曦, 杜晓东. 外加磁场对等离子熔覆Fe313合金涂层组织性能的影响[J]. 材料导报, 2020, 34(24): 24127-24131.
[8] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[9] 魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
[10] 韩瑞路, 阎红娟. Ti-Si-N纳米多层膜的研究进展[J]. 材料导报, 2019, 33(Z2): 169-174.
[11] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[12] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[13] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[14] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[15] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed