Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14039-14044    https://doi.org/10.11896/cldb.19060105
  无机非金属及其复合材料 |
介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性
魏钰坤1, 2, 廖海峰1, 2, 颜海涛1, 2, 吴小乐3, 戴乐阳1, 2
1 集美大学轮机工程学院, 福建省船舶与海洋工程重点实验室, 厦门 361021
2 集美大学福建航运研究院, 厦门 361021
3 中国人民解放军陆军驻九江地区军事代表室, 九江 332000
Surface Modification of Nano TiO2 Powders by Dielectric Barrier Discharge Plasma Assisted Ball Milling
WEI Yukun1, 2, LIAO Haifeng1, 2, YAN Haitao1, 2, WU Xiaole3, DAI Leyang1, 2
1 Fujian Provincial Key Laboratory of Naval Architecture and Ocean Engineering, School of Marine Engineering, Jimei University, Xiamen 361021, China
2 Fujian Shipping Research Institute of Jimei University, Xiamen 361021, China
3 Jiujiang Military Representative Office of the General Armament Department, Jiujiang 332000, China
下载:  全 文 ( PDF ) ( 4117KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善纳米TiO2粉体在润滑油中的分散稳定性,分别以硬脂酸、油酸、季铵盐+月桂酸钠作为表面修饰剂,通过介质阻挡放电等离子体辅助球磨11 h后制备了表面改性的纳米TiO2粉体。采用SEM、FT-IR、XPS、XRD、TG-DSC、亲油化度等对样品进行分析。结果表明:经球磨制备的TiO2粉体粒径在50~200 nm之间,相比原始颗粒晶粒尺寸减小了12%~68%,晶格畸变显著增加;修饰剂中的亲油基团-CH2和-CH3原位修饰在TiO2表面,有机物中的羧酸根和TiO2表面的羟基发生化学反应形成了稳定的共价化学键,使纳米TiO2粉体的亲油化度值明显提高,极大改善了纳米TiO2在润滑油中的分散稳定性。在等离子体辅助球磨过程中,等离子体的快速加热效应是促进TiO2粉体细化、提高粉体活性并影响其表面改性的主要原因之一。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏钰坤
廖海峰
颜海涛
吴小乐
戴乐阳
关键词:  纳米TiO2  等离子体辅助球磨  表面改性  加热效应  表面活性    
Abstract: In order to improve the dispersive stability of nano TiO2 powders in lubricating oil, several surface modifiers, such as stearic acid, oleic acid, quaternary ammonium salt/sodium laurate and so on, have been selected to prepare surface modified nano TiO2 powders by dielectric barrier discharge plasma assisted ball milling for 11 h. These prepared samples were analyzed by SEM, FT-IR, XPS, XRD, TG-DSC and lipophilic degree. The results show that the particle size of TiO2 powder prepared by ball milling is between 50—200 nm. The crystallite size decreases by 12%—68% and the lattice distortion increases significantly. The nano TiO2 powders are in situ modified by lipophilic groups -CH2 and -CH3 in the modifier on the surface. The lipophilicity of modified nano TiO2 powders has been improved dramatically because of stable covalent chemical bonds formed by the chemical reaction between carboxylic acids in organic compounds and hydroxyl groups on the surface of TiO2, which results in the improvement of dispersion stability of nano TiO2 in lubricating oil. In the ball milling assisted by high-energy plasma, the rapid heating effect of plasma is one of the main reasons for promotion of the TiO2 powder refinement, improvement of the powder activity and effect of the surface modification.
Key words:  nano TiO2    plasma assisted ball milling    surface modification    heating effect    surface activity
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TB383  
基金资助: 国家自然科学基金(51779103); 福建省科技计划项目(2018H0026); 福建省自然科学基金项目(2019J01708);集美大学福建航运研究院开放课题基金
作者简介:  魏钰坤,集美大学轮机工程学院研究生,主要研究纳米复合润滑添加剂及其在轮机工程领域中的应用。
戴乐阳,集美大学轮机工程学院教授,博士研究生导师。2006年于华南理工大学材料加工工程专业取得博士学位。在国内外学术期刊发表论文30余篇,申请国家发明专利8项,主要研究方向为:轮机摩擦磨损预防与控制、海洋腐蚀与防护、轮机故障诊断等。
引用本文:    
魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
WEI Yukun, LIAO Haifeng, YAN Haitao, WU Xiaole, DAI Leyang. Surface Modification of Nano TiO2 Powders by Dielectric Barrier Discharge Plasma Assisted Ball Milling. Materials Reports, 2020, 34(14): 14039-14044.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060105  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14039
1 Diasanayake M A K L, Senadeera G K R, Sarangika H N M, et al. Materials Today: Proceedings, 2016, 3, 40.
2 Wu H, Zhao J W, Cheng X W, et al. Tribology International, 2018, 117, 24.
3 Ingole S, Charanpahari A, Kakade A, et al. Wear, 2013, 301(1-2),776.
4 Li Q. Preparation of nanometer TiO2/SiO2 composite particles and its application in UV-resistant and superhydrophobic finishing of cotton fabrics. Master's Thesis, Shanghai University of Engineering Science, China, 2016(in Chinese).
李倩. 纳米TiO2/SiO2复合微粒的制备及在棉织物抗紫外超疏水整理上的应用. 硕士学位论文, 上海工程技术大学, 2016.
5 Shafi W K, Charoo M S. Materials Today: Proceedings, 2018, 5(9), 20621.
6 Rahimi N, Pax R. A, Gray E. M, et al. Progress in Solid State Chemistry, 2016, 44(3), 86.
7 Wen J Q, Li X, Liu W, et al. Journal of Catalysis, 2015, 36(12), 2049.
8 Delogu F, Gorrasi G, Sorrentino A, et al. Progress in Materials Science, 2017, 86,75.
9 Acar I, Acisli O. Applied Surface Science, 2018, 457,208.
10 Varina R, Calk A, Wexler D, et al. Journal of Alloys and Compounds, 2004,370(1-2), 230.
11 Zhu M, Lu Z C, Hu R Z, et al. Acta Metallurgica Sinica, 2016,52 (10), 1239(in Chinese).
朱敏, 鲁忠臣, 胡仁宗,等. 金属学报, 2016,52(10),1239.
12 Lang C G, Ouyang L Z, Dai L Y, et al. International Journal of Hydrogen Energy, 2018,43(36),17346.
13 Hu J J, Zou Y, Hou T F, et al. Journal of Chongqing University of Technology (Natural Science), 2014,28(7),35(in Chinese).
胡建军, 邹毅, 侯天凤, 等. 重庆理工大学学报(自然科学), 2014,28(7),35.
14 Wen Z L, L H G, Yan B L, et al. Ceramics International, 2019,45(2), 2250.
15 Dai L Y, M R G, Chen J F, et al. CN. patent application, ZL201410068071.5, 2015(in Chinese).
戴乐阳, 孟荣刚, 陈景锋, 等.中国专利: ZL201410068071.5, 2015.
16 Imai Junichiro. JP. patent application, Heisei 2-194063.
17 Perrin F V, Nguyen J. Journal of Sol-Gel Science and Technology, 2003, 28(2), 205.
18 Doeuff S, Henry M, Sanchez C, et al. Journal of Non-crystalline Solids, 1987, 89(1-2), 206.
19 Nakamoto K. In: Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York, 2009, pp.62.
20 Zou L, Wu X D, Chen H G, et al. Journal of Physical Chemistry, 2001, 17(4), 305.
21 Li X W. Applied Surface Science, 2003, 217(1), 16.
22 Yao C, Chen Z G, Gong F H, et al. Chinese Journal of Inorganic Che-mistry, 2006, 22 (6), 1000(in Chinese).
姚超, 陈志刚, 龚方红, 等. 无机化学学报, 2006, 22(6),1000.
23 Mohamed F A. Materials Science and Engineering, 2019, 752,15.
24 Masoumi H, Haghighi Khoshkhoo R, Mirfendereski S M. Thermochimica Acta, 2019, 675, 9.
25 Pérez-Dieste V, Castellini O M, Crain J N, et al. Applied Physics Letters, 2003, 83(24), 5053.
26 Zhang W, Chen J W, Chen Y, et al. Carbohydrate Polymers, 2016, 138, 59.
27 Peng S Q. Physics, 1996, 25(10), 628(in Chinese).
彭商强. 物理, 1996, 25(10), 628.
28 Ye K, Liang F, Yao Y C, et al. Materials Reports A:Review Papers, 2019,33 (7), 1089(in Chinese).
叶凯, 梁风, 姚耀春, 等. 材料导报:综述篇, 2019,33(7),1089.
[1] 刘仁杰, 李三喜, 王松, 张爱玲. 蒙脱土剥离方法的研究进展[J]. 材料导报, 2020, 34(Z1): 249-254.
[2] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[3] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[4] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
[5] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[6] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[7] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[8] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[9] 张理元, 由耀辉, 刘义武, 阮尚全. 无机沉淀胶溶法制备钛锂离子筛及其吸附性能研究[J]. 材料导报, 2019, 33(24): 4056-4061.
[10] 鲍艳, 刘盼, 郭佳佳. 利用双子表面活性剂辅助制备纳米材料和介孔材料的研究进展[J]. 材料导报, 2019, 33(21): 3678-3685.
[11] 吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
[12] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[13] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[14] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[15] 李振伟, 狄士春. 纳米TiO2微粒对2214铝合金微弧氧化膜微观结构及耐磨性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1294-1299.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed