Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2538-2545    https://doi.org/10.11896/cldb.18110145
  无机非金属及其复合材料 |
表面改性硅/铝质材料及其在水泥基材料中应用的研究进展
王爱国,朱愿愿,李燕,刘开伟,徐海燕,孙道胜,范良朝
安徽建筑大学安徽省先进建筑材料重点实验室,合肥 230022
Research Progress on Surface Modification of Silicon-Aluminum Materials and Their Applications in Cement-based Materials
WANG Aiguo, ZHU Yuanyuan, LI Yan, LIU Kaiwei, XU Haiyan, SUN Daosheng, FAN Liangchao
Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022
下载:  全 文 ( PDF ) ( 2325KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥基材料是工程建设中必不可少的材料,其生产带来的环境和资源消耗问题逐渐被广泛关注。同时,工业废弃物的产量逐年增加,其引起的环境污染问题也愈发严重。从环保及可持续发展角度考虑,可将硅/铝质工业废弃物用于水泥基材料中,此举可同时解决水泥熟料生产和工业废弃物排放造成的环境问题。
但部分硅/铝质工业废弃物由于活性相对较低,大量使用会导致水泥基材料早期强度较低,限制了其在水泥基材料中的掺量。超细硅/铝质材料极易团聚,导致其性能不能得到充分发挥,从而影响了硅/铝质材料在水泥基材料中的高效利用。现代水泥混凝土的性能不再仅以力学性能作为评判标准,良好的工作性、耐久性和功能性也是其发展趋势。此外,功能材料如何与水泥基材料结合才能更好地发挥其功能性也是目前水泥混凝土领域研究的热点。
采用表面改性技术对硅/铝质材料性能进行改善已取得了较好的效果。对一些惰性或活性较低的硅/铝质工业废弃物进行必要的改性,可在一定程度上提高其活性,缓解其作为掺合料使用带来的水泥基材料早期强度低的问题,同时还可增加其在水泥基材料中的掺量,提升工业废弃物的综合利用率。酸碱微腐蚀表面改性和增钙煅烧表面改性等技术是提升硅/铝质材料(粉煤灰、石英砂尾矿等)活性常用的方法。功能外加剂表面改性可改善超细硅/铝质材料的团聚现象,提高其在水泥基材料中的分散性。而分散性的提高使硅/铝质材料在水泥基材料中性能发挥更充分,同时改善水泥基材料的工作性能。颗粒负载表面改性是将具有环境清洁功能的材料负载在硅/铝质材料的表面,在满足掺合料基本性能的同时,还能起到治理环境的作用。硅/铝质工业废弃物的改性利用将获得“以污治污”双重环境效益。
本文综述了利用表面改性技术提升硅/铝质材料活性、分散性和功能性的研究进展,提出了表面改性技术在水泥基材料应用中存在的问题,以期为硅/铝质工业废弃物的高效利用提供参考性建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王爱国
朱愿愿
李燕
刘开伟
徐海燕
孙道胜
范良朝
关键词:  硅/铝质材料  表面改性  水泥基材料  活性  功能化    
Abstract: Cement-based materials are indispensable materials in engineering construction, but the problems of environment and resource consumption caused by their production have been paid more and more attention. Meanwhile the output of industrial wastes is increasing year by year, and the environmental pollution caused by industrial wastes is becoming more and more serious. Considering environmental protection and sustainable development, silicon-aluminium industrial wastes can be used in cement-based materials. This approach can solve the environmental problems caused by the production of cement clinker and the emissions of industrial wastes at the same time.
However, the lower activity of some silicon-aluminium industrial wastes used extensively in cement concrete will reduce the early strength of cement-based materials and also limit their utilization. The properties of ultrafine silicon-aluminium materials are not fully released due to their agglomeration and poor dispersivity, which will affect the efficient use of silicon-aluminium materials in cement-based materials. The performances of modern cement concrete are no longer only judged by the mechanical properties, and good workability, durability and functionality are its trend to develop. Finding ways to combine functional materials with cement-based materials in order to better play their functions is also one of the research hotspots in the field of cement concrete.
Surface modification technologies have achieved good results in improving the properties of silicon-aluminium materials. The modification of some inert or less active silicon-aluminium industrial wastes can improve their activity on a degree, and reduce the decline of early strength of cement-based materials caused by their use as admixtures, which can also increase their quantities used in cement-based materials and improve the comprehensive utilization of industrial wastes. The technologies of surface modification including acid-base micro-corrosion and calcined with calcareous materials are common methods to improve the activity of silicon-aluminium materials (fly ash, quartz sand tailings, etc.). Surface modification by using functional additives can reduce the agglomeration of ultrafine silicon-aluminium materials and increase their dispersivity in cement-based materials, which can make the properties of silicon-aluminium materials develop more fully and improve the workability of cement-based materials. Loading materials with environmental cleaning function on the surface of silicon-aluminium materials can not only meet the basic properties of admixtures, but also play a role in protecting environment, and the utilization of silicon-aluminium industrial wastes modified by surface modification technologies will play a dual environmental benefit of “treating pollution by using wastes”.
This paper summarizes the research progress on improving the properties of silicon-aluminium materials include activity, dispersivity and functionality by using the technologies of surface modification. Some problems still exist in the application of surface modification technologies in cement-based materials are put forward in order to provide reference suggestions for the efficient utilization of industrial wastes.
Key words:  silicon-aluminium materials    surface modification    cement-based materials    activity    functionalization
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  TU528.041  
基金资助: 国家自然科学基金(51778003;51578004); 安徽建筑大学先进建筑材料安徽省重点实验室主任基金(JZCL201604ZZ); 安徽省高等教育人才项目(gxyqZD2016150); 安徽省高校大学生创新创业训练计划项目(201810878280)
作者简介:  王爱国,安徽建筑大学,副教授,硕士生导师。2010年毕业于南京工业大学,获材料学博士学位。2017年于澳大利亚南昆士兰大学未来材料中心做访问学者。主持和参与国家自然科学基金项目、安徽省高校自然科学研究重点研究项目、高性能土木工程材料国家重点实验室开放课题和材料化学工程国家重点实验室开放课题等省部级以上项目10项。中国建筑学会建筑材料分会化学激发胶凝材料专业委员会委员。主要研究方向为高性能水泥基材料/建筑功能材料/固体废弃物综合利用。
孙道胜,安徽建筑大学硕士研究生导师,受聘兼任中国科学院合肥物质科学研究院博士研究生导师。1986年本科毕业于重庆大学建筑材料及制品专业,获工学学士;2004年研究生毕业于南京工业大学材料学专业,获工学博士;2005年获聘教授。安徽省硅酸盐学会常务理事,安徽省水泥标准化技术委员会常务理事,安徽省水泥协会常务理事。主要从事高性能混凝土、固体废弃物的综合利用和先进建筑材料等方面的研究工作。
引用本文:    
王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
WANG Aiguo, ZHU Yuanyuan, LI Yan, LIU Kaiwei, XU Haiyan, SUN Daosheng, FAN Liangchao. Research Progress on Surface Modification of Silicon-Aluminum Materials and Their Applications in Cement-based Materials. Materials Reports, 2019, 33(15): 2538-2545.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110145  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2538
[1] Li W, Gao S B. Energy,2018,165,33.
[2] http://www.miit.gov.cn/n1146285/n1146352/n3054355/n3057569/n3057581/c6059902/content.html.
[3] Feng X Z, Lugovoy O, Qin H. Advances in Climate Change Research,2018,9(1),34.
[4] Ren C Z, Wang W L, Li G L. Construction and Building Materials,2017,152,39.
[5] Garcia-Lodeiro I, Carcelen-Taboada V, Fernández-Jiménez A, et al. Construction and Building Materials,2016,105,218.
[6] Rafieizonooz M, Mirza J, Salim M R, et al. Construction and Building Materials,2016,116,15.
[7] Gupta L K, Vyas A K. Construction and Building Materials,2018,191,155.
[8] Kong Y. Study on the modification of metakaolin and its effect on the properties of cement-based materials.Master’s Thesis, Wuhan University of Technology, China,2013(in Chinese).
孔赟.偏高岭土改性及其在水泥基材料中的应用研究.硕士学位论文,武汉理工大学,2013.
[9] Huang C Y, Yuan R Z, Long S Z. Bulletin of the Chinese Ceramic Society,2004,23(2),11(in Chinese).
黄从运,袁润章,龙世宗.硅酸盐通报,2004,23(2),11.
[10] Ma B G, Zhang B L, Chen F J, et al. Journal of Wuhan University of Technology,2015,37(5),9(in Chinese).
马保国,张昺榴,陈方颉,等.武汉理工大学学报,2015,37(5),9.
[11] Luo Y, Zheng S L, Ma S H, et al. Construction and Building Materials,2018,163,529.
[12] Bai J L, Li Y Z, Ren L, et al. ACS Sustainable Chemistry & Enginee-ring,2015,3(11),2866.
[13] Qian J S, Wu C M, Wang Z. Fly Ash Comprehensive Utilization,2001(1),37(in Chinese).
钱觉时,吴传明,王智.粉煤灰综合利用,2001(1),37.
[14] Wang A Q, Zhang C Z, Sun W. Cement and Concrete Research,2003,33(12),2023.
[15] Wang A Q, Zhang C Z, Sun W. Cement and Concrete Research,2004,34(11),2057.
[16] Wang A Q, Zhang C Z, Sun W. Cement and Concrete Research,2004,34(11),2061.
[17] Lee C Y, Lee H K, Lee K M. Cement and Concrete Research,2003,33(3),425.
[18] Yan C Y. New Building Materials,2005(4),23(in Chinese).
鄢朝勇.新型建筑材料,2005(4),23.
[19] Bentz D P, Ferraris C F. Cement & Concrete Composites,2010,32(4),265.
[20] Liao W Y, Ma H Y, Sun H F, et al. Fuel,2017,209,490.
[21] Chen Y Z, Ding Q J, Xu Y, et al. Journal of Wuhan University of Technology,2001,23(11),19(in Chinese).
陈友治,丁庆军,徐瑛,等.武汉理工大学学报,2001,23(11),19.
[22] Yang N R, Zhong B Q, Yang S D, et al. Cement Engineering,2017,30(1),1(in Chinese).
杨南如,钟白茜,杨世铎,等.水泥工程,2017,30(1),1.
[23] Wang X J, Chen Y, Zhou H Q, et al. Journal of the Chinese Ceramic Society,2001,29(4),389(in Chinese).
王晓钧,陈悦,周洪庆,等.硅酸盐学报,2001,29(4),389.
[24] Cui Z Z. New Building Materials,2002(9),22(in Chinese).
崔自治.新型建筑材料,2002(9),22.
[25] Ren S X, Yao B W, Wang C R. Fly Ash Comprehensive Utilization,2008(4),50(in Chinese).
任书霞,要秉文,王长瑞.粉煤灰综合利用,2008(4),50.
[26] Yu J S, Li R F, Sui C F, et al. Fly Ash Comprehensive Utilization,2000,14(2),26(in Chinese).
于继寿,李仁福,隋成飞,等.粉煤灰综合利用,2000,14(2),26.
[27] Liang Y, Qian J S, Wang Z. Fly Ash Comprehensive Utilization,2004(3),44(in Chinese).
梁郁,钱觉时,王智.粉煤灰综合利用,2004(3),44.
[28] Zhang P C. In: The Third International Senion Seminar for Fly-Ash Comprehensive Utilization and Technique of Other Solid Waste Disposal. Shi-jiazhuang,2006,pp.66.
[29] Zou H Q. Mining Technology,2004,4(4),17(in Chinese).
邹海清.采矿技术,2004,4(4),17.
[30] Li D X, Chen Y M, Shen J L, et al. Materials Science and Engineering,2000,18(1),50(in Chinese).
李东旭,陈益民,沈锦林,等.材料科学与工程,2000,18(1),50.
[31] Yang X G, Ni W, Zhang Z, et al. Journal of University of Science and Technology Beijing,2007,29(12),1195(in Chinese).
杨晓光,倪文,张筝,等.北京科技大学学报,2007,29(12),1195.
[32] Ma B G, Liu X H, Tan H B, et al. Construction and Building Materials,2018,175,726.
[33] Li C, Zhu H B, Wu M X, et al. Cement and Concrete Research,2017,92(Complete),98.
[34] vegl F, uput-Strupi J, krlep L, et al. Cement and Concrete Research,2008,38(7),945.
[35] Kong X M, Liu H, Lu Z B, et al. Cement and Concrete Research,2015,67(18),168.
[36] Wang L J, Diao J Z, Li L, et al. New Chemical Materials,2015,43(11),176(in Chinese).
王丽洁,刁建志,李龙,等.化工新型材料,2015,43(11),176.
[37] Xu Y S, Chung D D L. Cement and Concrete Research,2000,30(8),1305.
[38] Tian K, Kong Y, Wang Y L, et al. China Concrete and Cement Products,2018(3),25(in Chinese).
田焜,孔贇,王月兰,等.混凝土与水泥制品,2018(3),25.
[39] Guo L P, Lei D Y, Chen B, et al. Surface Technology,2018,47(7),146(in Chinese).
郭丽萍,雷东移,陈波,等.表面技术,2018,47(7),146.
[40] Kong Y, Li S, Han J L. New Building Materials,2015(12),60(in Chinese).
孔赟,李松,韩金龙.新型建筑材料,2015(12),60.
[41] Ma B G, Li Y X, Chen Y Z. Journal of the Chinese Ceramic Society,2000,28(Z1),65(in Chinese).
马保国,李永鑫,陈友治.硅酸盐学报,2000,28(Z1),65.
[42] Zhu Y F. Journal of the Chinese Ceramic Society,1989,17(1),82(in Chinese).
朱玉锋.硅酸盐学报,1989,17(1),82.
[43] Li S Y, Deng M, Mo L W. Concrete,2010(9),83(in Chinese).
李诗杨,邓敏,莫立武.混凝土,2010(9),83.
[44] Qian J S, Ji X K, Fan Y R, et al. Journal of Chongqing Jianzhu University,2008,30(5),148(in Chinese).
钱觉时,纪宪坤,范英儒,等.重庆建筑大学学报,2008,30(5),148.
[45] Hao C W, Deng M, Mo L W, et al. Journal of Wuhan University of Technology (Materials Science Edition),2012,27(6),1149.
[46] Hao C W. Influence mechanism of surface modification of fly ashes on autogenous shrinkage and compressive strength of blend cement pastes. Ph.D. Thesis. Nanjing Tech University,China,2011(in Chinese).
郝成伟.表面改性粉煤灰对水泥浆体自收缩和抗压强度的影响机理.博士学位论文,南京工业大学,2011.
[47] Zhang F H, Deng M, Mo L W. China Concrete and Cement Products,2012(7),11(in Chinese).
张福恒,邓敏,莫立武.混凝土与水泥制品,2012(7),11.
[48] Wang C H, Yang Z S, Ge J L, et al. China Non-Metallic Mining Industry Herald,2008(3),16(in Chinese).
王传虎,杨周生,葛金龙,等.中国非金属矿工业导刊,2008(3),16.
[49] Lei Y. Journal of Chongqing University of Science and Technology (Social Sciences Edition),2012(18),78(in Chinese).
雷宇.重庆科技学院学报(社会科学版),2012(18),78.
[50] Song J G, Wu B L. Non-Metallic Mines,2005,28(1),19(in Chinese).
宋杰光,吴伯麟.非金属矿,2005,28(1),19.
[51] Jiang X X, Chen P R. Contributions to Geology and Mineral Resources Research,2001,16(4),276(in Chinese).
蒋学鑫,陈培荣.地质找矿论丛,2001,16(4),276.
[52] Xu T Y. Multipurpose Utilization of Mineral Resources,2005(6),33(in Chinese).
徐天勇.矿产综合利用,2005(6),33.
[53] Chen D, Deng M. Journal of Materials Science and Engineering,2018,36(2),180(in Chinese).
陈登,邓敏.材料科学与工程学报,2018,36(2),180.
[54] Chen D, Deng M, Hao C W, et al. Journal of Wuhan University of Technology,2017,32(5),1140.
[55] Chen D. Modification of micro-interface between quartz tailing and cement paste and its effects on the properties on blended cement. Ph.D. Thesis, Nanjing Tech University, China,2016(in Chinese).
陈登.石英岩尾砂与水泥浆体微界面的改性及其对复合水泥性能的影响.博士学位论文,南京工业大学,2016.
[56] Hao C W, Chen D, Deng M, et al. Journal of Building Materials,2016,19(4),719(in Chinese).
郝成伟,陈登,邓敏,等.建筑材料学报,2016,19(4),719.
[57] Richardson I G. Cement and Concrete Research,2004,34(9),1733.
[58] Yang L, Wang F Z, Du D, et al. Construction and Building Materials,2016,126,886.
[59] Zhang G X, Yan Y, Hu Z H, et al. Construction and Building Materials,2017,138,26.
[60] Liu X L, Liu X B. Polymer Materials Science & Engineering,2004,20(2),28(in Chinese).
刘晓蕾,刘孝波.高分子材料科学与工程,2004,20(2),28.
[61] Chen Y C, Huang C Z, Ai X, et al. Journal of Inorganic Materials,2000,15(5),873(in Chinese).
陈元春,黄传真,艾兴,等.无机材料学报,2000,15(5),873.
[62] Chen H X, Wang P M, Zhao H. Journal of Building Materials,2003,6(3),227(in Chinese).
陈红霞,王培铭,赵红.建筑材料学报,2003,6(3),227.
[63] Roy D M, Oyefesobi S O. Journal of the American Ceramic Society,2010,60(3-4),178.
[64] Gajbhiye N S, Singh N B. Materials Research Bulletin,2010,45(8),933.
[65] Li S Q, Hu J S, Liu B, et al. Cement and Concrete Research,1999,29(10),1549.
[66] Chen H X. Study on preparation and hydration of cement clinker minerals by sol-gel method. Ph.D. Thesis, Tongji University, China,2003(in Chinese).
陈红霞.水泥熟料矿物的溶胶-凝胶法制备及其水化研究.博士学位论文,同济大学,2003.
[67] Shakhmenko G, Juhnevica I, Korjakins A. Procedia Engineering,2013,57(1),1013.
[68] She A M, Ye J W, Yao W, et al. New Building Materials,2018(1),50(in Chinese).
佘安明,叶瑾雯,姚武,等.新型建筑材料,2018(1),50.
[69] Zhang X, Yan Y, Xie F L, et al. Journal of Functional Materials,2013,44(Z2),293(in Chinese).
张旭,严云,谢斐琳,等.功能材料,2013,44(Z2),293.
[70] Zhang L, Zhang Y N, Rong H, et al. Materials Review B: Research Papers,2016,30(4),120(in Chinese).
张磊,张亚楠,荣辉,等.材料导报:研究篇,2016,30(4),120.
[1] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[2] 王珩, 刘伟宝, 陆采荣, 梅国兴, 戈雪良, 杨虎. PL复合掺合料对骨料碱活性的抑制及孔溶液分析[J]. 材料导报, 2019, 33(z1): 214-218.
[3] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[4] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[5] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[6] 刘俊莉, 邵建真, 李军奇, 刘辉, 谢乔. 新型ZnO/BiOI杂化纳米花的合成及可见光驱动抗菌活性[J]. 材料导报, 2019, 33(2): 205-210.
[7] 吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
[8] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[9] 王爱国,何懋灿,莫立武,刘开伟,李燕,周莹,孙道胜. 碳化养护钢渣制备建筑材料的研究进展[J]. 材料导报, 2019, 33(17): 2939-2948.
[10] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[11] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[12] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[13] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[14] 张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
[15] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed