Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2546-2551    https://doi.org/10.11896/cldb.18070029
  无机非金属及其复合材料 |
轻质多孔混凝土防水剂的研究进展
周薛霞1,杨赞中1,徐艳娇1,王路1,孙海滨1,王永在2,杜庆洋1,乐红志1
1.山东理工大学材料科学与工程学院,淄博 255049
2.山东理工大学分析测试中心,淄博 255049
A Review on Waterproofing Agent of Lightweight Porous Concrete
ZHOU Xuexia1, YANG Zanzhong1, XU Yanjiao1, WANG Lu1, SUN Haibin1, WANG Yongzai2,
DU Qingyang1, YUE Hongzhi1
1.School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049
2.Analysis and Testing Center, Shandong University of Technology, Zibo 255049
下载:  全 文 ( PDF ) ( 1615KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多孔混凝土具有质量轻、保温隔热、防火不燃等特性,是一种新型节能建筑材料。但多孔混凝土因孔隙率高、表面自由能大,导致其易吸水,严重影响了其强度和保温性能。因此,多孔混凝土的防水问题亟需研究解决。
多孔混凝土的防水研究主要集中在两个方面:一是基体结构优化,二是利用防水剂改性。基体结构优化主要通过改善混凝土的孔结构及孔间壁的晶胶比,以降低其吸水性。由于基体结构优化的防水效果有很大的局限性,因此通过防水剂改性提高多孔混凝土防水性能的研究更受关注。
防水剂在多孔混凝土表面或在气孔和毛细孔内形成疏水膜层,由此可降低混凝土的吸水性或是静水压力下的透水性。常用的防水剂为有机硅类、脂肪酸盐类及石蜡乳液类等。有机硅系主要通过长链有机基团取代,以获得具有良好疏水性的端基。脂肪酸盐系通过羧酸基与Ca2+形成“反毛细管效应”的沉淀物,或者是活性物质与基体结合,阻塞孔道而防水;石蜡乳液则通过对颗粒物形成包裹,使其表面由亲水性转化为憎水性,由此降低吸水率。
防水剂的作用方式分为两种:一是防水剂对基体表面的隔离,包括封闭型和开放型;二是防水剂与基体的结合,包括反应型和结合型。多孔混凝土的防水方法主要有两种:一是在表面涂覆、浸渍或喷涂防水剂的表面防水;二是在混凝土制备过程中掺加防水剂的内掺防水。表面防水效果因防水剂的渗透深度不同而异,与混凝土连通孔的比例、孔隙率的大小及防水剂的粘度和表面张力有关。内掺防水受防水剂的类型及其与硅酸盐基体的相容性等影响较大。但从防水的持久性和综合效果方面考量,内掺防水法更具优势。目前,主要通过吸水率、氯离子渗透系数和静态水接触角测量等方法来表征与评价多孔混凝土的防水效能,这方面的研究相对滞后,亟需建立一套完整的评价体系。
本文综述了轻质多孔混凝土的防水研究进展,重点阐述了防水剂的类型及其作用机理、防水剂的作用方式、防水剂的改性方法及表征与评价方法,提出了存在的问题及今后的发展趋势,以期为多孔混凝土材料防水性能的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周薛霞
杨赞中
徐艳娇
王路
孙海滨
王永在
杜庆洋
乐红志
关键词:  多孔混凝土  防水剂  防水机理  防水改性  体积憎水法  表征与评价    
Abstract: Porous concrete is a novel energy-saving building material, which features light weight, excellent thermal insulation, outstanding fire resis-tance and non-combustibility. However, it suffers a severe water-absorbing problem due to its high porosity and high surface free energy. The issue, degrading seriously the strength and thermal insulation properties, restrains their further applications. Therefore, it is imperative to address the waterproof problem of the porous concrete.
The matrix structure optimization and water repellent modification are two primary directions in current waterproof researches. The matrix structure is optimized by adjusting of the pore structure of the concrete and the crystal/gel ratio of pore walls to reduce the water absorption of concretes. Yet, the waterproof performance, achieved by the optimization of matrix structure, exhibits severe limitations. Hence, the method of the waterproofing agent modification to improve the waterproof performance gains more attentions.
The water repellent accomplishes the reduction of water absorption of the concrete or the water permeability under hydrostatic pressure through forming a hydrophobic film on the surface of porous concretes and/or in pores. Commonly, water repellents consist of silicones, fatty acid salts and paraffin emulsions. The silicone system achieves a good hydrophobicity via the substitution of long-chain organic group. The waterproof performance of the fatty acid salt is obtained by two methods: (ⅰ) forming a precipitate, which shows “anti-capillary effect”, by the reaction of carboxylic acid group and Ca2+; or (ⅱ) blocking pores through the active substance, which binds to the matrix. The paraffin emulsion achieves the reduced water absorption property through converting the surface property of particles from hydrophilicity into water repellency by encapsulation.
The action mode of the water repellent includes two types. One is the isolation of the substrate’s surface, including the closed-type and the opened-type. The other is the combination with the matrix, including the reaction and the binding type. Two main methods are utilized for the waterproofing of porous concrete. One is the surface waterproof, including coating, impregnating or spraying water repellent onto the surface. The other is the interior waterproofing, achieved by adding the water repellent into concretes during the preparation. The surface waterproofing performance varies depending on the penetration depth of the water repellent, and is related with the ratio of the communication hole of the concrete, the porosity, the viscosity of the water repellent, and the surface tension. The internal waterproofing is greatly affected by the type of the waterproofing agent and the compatibility of the silicate matrix. Therefore, the internal waterproofing method exhibits superiorities from the view of durability and comprehensive effects of waterproofing.
For the characterization and evaluation of the waterproof performance of porous concrete, the measurement of water absorption, chloride ion permeability and static water contact angle are mainly employed. However, the research in this aspect is relatively lagging. It is urgent to establish a complete evaluation system.
Herein, we reviewed the research progress of lightweight porous concrete waterproofing. The types, action mechanism and the action mode of water repellent, waterproof modification methods and characterization and evaluation methods were emphasized. The existing problems and future development trends were proposed. The insight gained by this work could provide reference for the further study of waterproof performance of porous concrete materials.
Key words:  porous concrete    waterproofing agent    waterproof mechanism    waterproof modification    volumetric hydrophobic method    characterization and evaluation
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  TU528  
基金资助: 山东省科技发展计划重大专项(2014GZX201008);淄博市校城融合发展计划(2016ZBXC141);淄博市创新发展重点项目计划(2016CX16A011)
作者简介:  周薛霞,2016年6月毕业于山东理工大学,获得工学学士学位。现为山东理工大学材料科学与工程学院硕士研究生,在杨赞中教授的指导下进行研究。目前主要研究领域为微孔功能材料。
杨赞中,山东理工大学材料学院教授,博士研究生导师,山东省高校先进复合材料重点实验室主任/首席专家。分别于1999年12月和2003年7月获得中国地质大学(北京)岩石矿物材料专业硕士、博士学位。从事无机微孔功能材料、分子筛及分子筛膜、结构-功能一体化新型建材及固体废弃物材料化利用等方面研究,取得了多项创新性成果。发表学术论文90余篇,获授权或公开发明专利20多项,3项成果分别获国家海洋创新成果二等奖、山东高校优秀科研成果三等奖及山东省循环经济十大创新科技成果奖;3项科研成果分别通过国家海洋局和山东省住建厅组织的鉴定,其中1项达到国际先进水平,2项达到国际领先水平。兼任中国矿物岩石材料专业委员会委员、山东省本科教育教学指导委员会委员,《现代技术陶瓷》《中国陶瓷会刊》及《山东理工大学学报》编委等。
引用本文:    
周薛霞,杨赞中,徐艳娇,王路,孙海滨,王永在,杜庆洋,乐红志. 轻质多孔混凝土防水剂的研究进展[J]. 材料导报, 2019, 33(15): 2546-2551.
ZHOU Xuexia, YANG Zanzhong, XU Yanjiao, WANG Lu, SUN Haibin, WANG Yongzai,
DU Qingyang, YUE Hongzhi. A Review on Waterproofing Agent of Lightweight Porous Concrete. Materials Reports, 2019, 33(15): 2546-2551.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070029  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2546
[1] Yang Z M, Chen X R, Liang Y F, et al. Popular Science and Technology,2014,16(3),53(in Chinese).
杨志明,陈向荣,梁燕飞,等.大众科技,2014,16(3),53.
[2] Zhou C Y, Wei J X, Yu Q J, et al. Journal of Wuhan University of Technology,2007,29(4),22(in Chinese).
周春英,韦江雄,余其俊,等.武汉理工大学学报,2007,29(4),22.
[3] Muhammad N Z, Keyvanfar A, Majid M Z A, et al. Construction and Building Materials,2015,101(1),80.
[4] Ding M. A study on the property of foam concrete with water repellents. Master’s Thesis, Hunan University, China,2011(in Chinese).
丁曼.防水性泡沫混凝土研究.硕士学位论文,湖南大学,2011.
[5] Xiang Q D, Wu Y, Li J, et al. New Building Materials,2014,41(10),46(in Chinese).
相秋迪,吴叶,李菊,等.新型建筑材料,2014,41(10),46.
[6] Wei Y R. Influence of durability to modified organosilicon waterproofing agent on concrete. Master’s Thesis, Xi’an University of Architecture and Technology, China,2005(in Chinese).
卫亚儒.改性有机硅防水剂的试验研究.硕士学位论文,西安建筑科技大学,2005.
[7] Stupart A W. Chemistry and Industry,1993,10,809.
[8] Zhao M X, Wu S P, Liu J S, et al. The World of Building Materials,2009,30(3),51(in Chinese).
赵满喜,吴少鹏,刘杰胜,等.建材世界,2009,30(3),51.
[9] Gao J F. Effects of aqueous SAP frost resistance and impermeability the concrete. Master’s Thesis, Harbin Institute of Technology, China,2014(in Chinese).
高健夫.憎水处理SAP对混凝土抗渗抗冻性的影响.硕士学位论文,哈尔滨工业大学,2014.
[10] Zhu H J. Silicone Materials,2007,21(6),338(in Chinese).
朱淮军.有机硅材料,2007,21(6),338.
[11] Shen C Y, Huang J J, Wang Q, et al. Construction Technology,2016,45(9),80.
沈川越,黄佳健,汪群,等.施工技术,2016,45(9),80.
[12] Mu Y, Zhou M, Luo L. Shanghai Coatings,2013,51(9),26(in Chinese).
穆颖,周铭,罗琳.上海涂料,2013,51(9),26.
[13] Sudbrink B, Moradllo M K, Hu Q, et al. Cement and Concrete Research,2017,92,121.
[14] Wang Z P. Effect of superhydrophobic coating on the frost resistance and anti-ice performance of concrete. Master’s Thesis, Harbin Institute of Technology, China,2015(in Chinese).
王宗鹏.超疏水涂层对混凝土抗冻性及防冰性影响研究.硕士学位论文,哈尔滨工业大学,2015.
[15] Wu P. New Building Materials,2003(6),55(in Chinese).
吴平.新型建筑材料,2003(6),55.
[16] Zhang J. Journal of Yangzhou Polytechnic Institute,2008(2),55(in Chinese).
张杰.扬州工业职业技术学院论丛,2008(2),55.
[17] Wang Y, Mu M Y. Construction and Budget,2017(11),39(in Chinese).
王野,慕明晏.建筑与预算,2017(11),39.
[18] Weisheit S, Unterberger S H, Bader T, et al. Construction and Building Materials,2016,110,145.
[19] Hu Y Y, He T S, Li J H. Sichuan Building Science,2010,36(3),214(in Chinese).
胡延燕,何廷树,李家辉.四川建筑科学研究,2010,36(3),214.
[20] Zeng C H, Zhang Y Q, Li X W, et al. New Building Materials,2007,34(4),46(in Chinese).
曾昌洪,张玉奇,李兴旺,等.新型建筑材料,2007,34(4),46.
[21] Wang X F. Experimental study on the property and optimization of autoclaved aerated concrete. Master’s Thesis, Xi’an University of Architecture and Technology, China,2006(in Chinese).
王秀芬.加气混凝土性能及优化的试验研究.硕士学位论文,西安建筑科技大学,2006.
[22] Li S J, Qian H P, Huang X H, et al. Journal of Building Materials,2017(6),970(in Chinese).
李书进,钱红萍,黄小红,等.建筑材料学报,2017(6),970.
[23] Hosoda A, Matsuda Y, Kobayashi K. Journal of Advanced Concrete Technology,2010,8(3),291.
[24] Teng L W, Huang R, Zou S Y, et al. Advanced Materials Research,2013,834,749.
[25] Tao X M, Hang J R, Wu J, et al. China Building Waterproofing,2010(18),17.
陶新明,黄金荣,吴璟,等.中国建筑防水,2010(18),17.
[26] Shan X B, Zhu W Z. Low Temperature Architecture Technology,2015,37(2),9(in Chinese).
单星本,朱卫中.低温建筑技术,2015,37(2),9.
[27] Beben D, Manko Z. Construction and Building Materials,2011,25(1),282.
[28] Li Y, Li Z G, Qin X M, et al. China Sciencepaper,2016,11(1),49(in Chinese).
李悦,李战国,秦宪明,等.中国科技论文,2016,11(1),49.
[29] Li X L, Li G Z, Wang L, et al. Applied Mechanics and Materials,2014,541,57.
[30] Ma C, Chen B. Construction and Building Materials,2016,123,106.
[31] Almusallam A A, Khan F M, Dulaijan S U, et al. Cement and Concrete Composites,2003,25(4),473.
[32] Rodrigues M P M C, Costa M R N, Mendes A M, et al. Materials and Structures,2000,33(10),618.
[33] Hao C L, Zhou Y C, Li Z, et al. Low Temperature Architecture Technology,2012,34(12),14(in Chinese).
郝聪林,周运灿,李治,等.低温建筑技术,2012,34(12),14.
[34] Jiang R, Zhang P, Zhao T J, et al. New Building Materials,2010,37(9),61(in Chinese).
姜蓉,张鹏,赵铁军,等.新型建筑材料,2010,37(9),61.
[35] Zhang P, Zhao T J, Dai J G, et al. China Civil Engineering Journal,2011,44(3),72(in Chinese).
张鹏,赵铁军,戴建国,等.土木工程学报,2011,44(3),72.
[36] Tian L, Gu X F, Yang K, et al. China Concrete and Cement Products,2017(10),6(in Chinese).
田砾,顾晓帆,杨可,等.混凝土与水泥制品,2017(10),6.
[37] Falchi L, Zendri E, Müller U, et al. Cement and Concrete Composites,2015,59,107.
[38] Luo Y, Li H L, Li Y L. New Building Materials,2007,34(12),48(in Chinese).
罗逸,李海玲,李云朗.新型建筑材料,2007,34(12),48.
[39] Horgnies M, Willieme P, Gabet O. Progress in Organic Coatings,2011,72(3),360.
[40] Herb H, Gerdes A, Brenner-WeiG. Cement and Concrete Research,2015,70,77.
[1] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[2] 王爱国,何懋灿,莫立武,刘开伟,李燕,周莹,孙道胜. 碳化养护钢渣制备建筑材料的研究进展[J]. 材料导报, 2019, 33(17): 2939-2948.
[3] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[4] 王爱国,郑毅,张祖华,刘开伟,马瑞,孙道胜. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560.
[5] 张文华, 吕毓静, 刘鹏宇. EPS混凝土研究进展综述[J]. 材料导报, 2019, 33(13): 2214-2228.
[6] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[7] 胡文龙, 刘赞群, 裴敏. 引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响[J]. 材料导报, 2019, 33(z1): 239-243.
[8] 王珩, 刘伟宝, 陆采荣, 梅国兴, 戈雪良, 杨虎. PL复合掺合料对骨料碱活性的抑制及孔溶液分析[J]. 材料导报, 2019, 33(z1): 214-218.
[9] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[10] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[11] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[12] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[13] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[14] 丁杨, 周双喜, 董晶亮, 王中平, 郑智秋. 人工智能方法在土木工程监测中的运用[J]. 材料导报, 2019, 33(z1): 274-277.
[15] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed