Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2552-2560    https://doi.org/10.11896/cldb.19040211
  无机非金属及其复合材料 |
地聚物胶凝材料改性提高混凝土耐久性的研究进展
王爱国1,郑毅1,张祖华2,刘开伟1,马瑞1,孙道胜1
1.安徽建筑大学安徽省先进建筑材料重点实验室 合肥 230022
2.湖南大学绿色先进土木工程材料及应用技术湖南省重点实验室 长沙 410082
Research Progress of Geopolymer Cementitious Material Modification for Improving Durability of Concrete
WANG Aiguo1, ZHENG Yi1, ZHANG Zuhua2, LIU Kaiwei1, MA Rui1, SUN Daosheng1
1.Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022
2.Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 2171KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地聚物是一类由火山灰活性或潜在水硬性的材料与碱性激发剂反应而形成的胶凝材料。研究显示,许多地聚物在力学性能、高温稳定性、耐硫酸盐侵蚀性能及耐酸碱腐蚀等方面的表现比传统硅酸盐水泥基材料更为优异,但它也存在一些缺点,如抗碳化性能差以及干燥收缩大,限制了其在建筑工程中的应用。
地聚物在硬化过程中伴随着较大的体积收缩,极易产生微裂纹,而微裂纹则成为侵蚀离子进入地聚物内部的通道,从而降低地聚物的抗渗性能和耐久性能。在碳化过程中,CO2溶解在孔隙溶液中会与矿渣基地聚物产物C-(A)-S-H凝胶发生反应生成CaCO3,破坏地聚物产物结构;而粉煤灰基地聚物的主要产物N-A-S-H凝胶并没有脱钙过程,其碳化导致孔溶液碱度降低,产物稳定存在的环境被破坏。
本文从地聚物产物组成与结构入手,综述了利用MgO、层状双金属氢氧化物(LDHs)、纳米粒子等材料改性和改进养护方式解决上述问题的最新研究进展,阐明了材料改性提高混凝土耐久性的作用机理:MgO掺入地聚物中与水反应生成膨胀性组分Mg(OH)2,从而有效补偿地聚物自收缩和干燥收缩,且MgO可参与聚合反应生成对CO2具有明显吸附作用的水滑石,提升地聚物的抗碳化性能;掺入的LDHs具有层间离子可交换性,在侵蚀过程中将侵蚀离子置换进层状结构中,降低其对地聚物结构的破坏程度;纳米粒子掺入地聚物中主要起到晶种成核和颗粒填充效应,可以改善地聚物的孔隙结构,同时硅铝质纳米粒子可参与聚合反应,使微观结构更致密;高温(蒸压)养护可促进聚合反应、改善孔结构、减少微裂纹生成,提升地聚物的抗渗透性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王爱国
郑毅
张祖华
刘开伟
马瑞
孙道胜
关键词:  地聚物  耐久性  MgO  LDHs  纳米粒子  养护方式    
Abstract: Geopolymers belong to the family of cementitious materials that are formed by reaction between solids with pozzolanic activity or hydraulicity potential and alkaline activator. In the past years extensive researches have shown the advantages over traditional Portland cement-based materials in the following aspects: mechanical properties, high temperature stability, sulfate resistance and corrosion resistance. However, some technical problems still remain, including low carbonization resistance and large drying shrinkage, limiting the application in construction engineering.
Geopolymers have large volume shrinkage during geopolymerization, and are prone to form microcracks, which become channels for outside ions, thus reduce impermeability and durability of geopolymer. During carbonization, CO2 dissolved in pore solution and reacts with alkali activated slag (AAS) product C-(A)-S-H gels to form CaCO3, which can destroy the structure of geopolymer product. N-A-S-H gels are the main products of fly ash-based geopolymer which have no decalcification reaction during carbonization. Carbonization lower the pH of pore solution, and change the stable environment of products.
From the perspectives of composition and structure modification, this paper reviews the latest research progresses of using MgO, LDHs, nanoparticles and improved curing methods, and clarifies the mechanisms of modification of geopolymer gelling materials to improve concrete durability. MgO reacts with water to form expansion component Mg(OH)2, which can effectively compensate geopolymer drying shrinkage and self-shrinkage. Moreover, MgO participate in geopolymerization to produce hydrotalcite, which improves the carbonization resistance. LDHs have interlayer ion exchange ability and the replacement between outside and inside ions reduces the attack of erosive ions on geopolymer. Nanoparticles have nucleation and particle filling functions, refining the pore structure of geopolymer. Silica-alumina nanoparticles also participate in geopolyme-rization and facilitate a more compact structure. High temperature (autoclave) curing can promote geopolymerization, improve the pore structure, reduce the generation of microcracks and the permeability of geopolymer.
Key words:  geopolymer    durability    MgO    LDHs    nanoparticles    curing methods
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51778003;51878263);高性能土木工程材料国家重点实验室开放课题(2018CEM002);安徽省高等教育人才项目(皖教高[2014]11号文);高校优秀中青年骨干人才国内外访学研修项目(gxfxZD2016134);国家级专业综合改革试点建设项目(ZG0241)
作者简介:  王爱国,安徽建筑大学,副教授,硕士研究生导师。2010年毕业于南京工业大学,获材料学博士学位。2017年于澳大利亚University of Southern Queensland, Centre for Future Materials作访问学者。主持和参与国家自然科学基金项目、安徽省高校自然科学研究重点研究项目、高性能土木工程材料国家重点实验室开放课题和材料化学工程国家重点实验室开放课题等省部级以上项目10项。Construction and Building MaterialsCement and Concrete Composites、《材料导报》《硅酸盐通报》等学术期刊审稿人,中国建筑学会建筑材料分会化学激发胶凝材料专业委员会委员。主要研究方向为高性能水泥基材料/建筑功能材料/固体废弃物综合利用。
张祖华,湖南大学土木工程学院教授,博导。2006年本科毕业于南京工业大学无机非金属专业,2014年博士毕业于南昆士兰大学。2014年起历任南昆士兰大学研究员、高级研究员。2017年获第十三批“千人计划”青年项目资助。研究领域为低碳混凝土材料制备、固体废弃物资源化和特种功能混凝土。在碱激发水泥领域提出了粉煤灰活性指数和风化潜力的概念及其定量表征方法,在2017年第三届国际化学激发材料会议上获得“杰出青年研究员”奖。Composites Part B: Engineering Journal编委,Journal of Sustainable Cement-Based Materials执行主编,Materials Frontier-Structure副主编。
引用本文:    
王爱国,郑毅,张祖华,刘开伟,马瑞,孙道胜. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560.
WANG Aiguo, ZHENG Yi, ZHANG Zuhua, LIU Kaiwei, MA Rui, SUN Daosheng. Research Progress of Geopolymer Cementitious Material Modification for Improving Durability of Concrete. Materials Reports, 2019, 33(15): 2552-2560.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040211  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2552
[1] Shi C J, Jiménez A F, Palomo A. Cement and Concrete Research,2011,41(7),750.
[2] Zhang Z H, Synthesis, performances and reaction mechanism of meta-kaolin-based geopolymer. Ph.D. Thesis, Nanjing University of Technology,China,2010(in Chinese).
张祖华.偏高岭土基无机聚合物的制备,性能与反应机理.博士学位论文,南京工业大学,2010.
[3] Adamiec P, Benezet J C, Benhassaine A. Particuology,2008,6(2),93.
[4] Lothenbach B, Scrivener K, Hooton R D. Cement and Concrete Research,2011,41(12),1244.
[5] Luukkonen T, Abdollahejad Z, Yliniemi J, et al. Cement and Concrete Research,2018,103,21.
[6] Provis J L. Cement and Concrete Research,2018,114,40.
[7] Xu H, Van D J S J. International Journal of Mineral Processing,2000,59(3),247.
[8] Glukhovsky V D. Slag-alkali concretes produced from fine-grained aggregate, Vishcha Shkolay Press, Ukraine,1981.
[9] Fang X W, Shen C N, Yang D B, et al. Journal of Building Materials,2007,10(1),89(in Chinese).
方祥位,申春妮,杨德斌,等.建筑材料学报,2007,10(1),89.
[10] Liu K, Mo L, Deng M. Advances in Cement Research,2015,27(8),1.
[11] Liu K, Deng M, Mo L, et al. Advances in Cement Research,2015,27(8),477.
[12] Shen X D, Li Z J, Cement and concrete for marine applications, Chemical Industry Press, China,2016(in Chinese).
沈晓东,李宗津.海洋工程水泥与混凝土材料,化学工业出版社,2016.
[13] Dunuzovic' N, Komljenovic' M, Nikolic' V, et al. Construction and Buil-ding Materials,2017,157,737.
[14] Ismail I, Bernal S A, Provis J L, et al. Materials and Structures,2013,46(3),361.
[15] Elyamany H E, Elmoaty A E M A, Elshaboury A M. Construction and Building Materials,2018,184,111.
[16] Jin M T, Chen Y, Dong H L. Journal of Zhejiang University of Technology,2013,41(6),596(in Chinese).
金漫彤,陈颖,董海丽.浙江工业大学学报,2013,41(6),596.
[17] Sata V, Sathonsaowaphak A, Chindaprasirt P. Cement and Concrete Composites,2012,34(5),700.
[18] Alexander M, Bertron A, Belie N D. Performance of cement-based mate-rials in aggressive aqueous environments, Springer Netherlands Press, Germany,2013.
[19] Bouguermouh K, Bouzidi N, Mahtout L, et al. Journal of Non-Crystalline Solids,2017,463,128.
[20] Gao X X, Michaud P, Joussein E, et al. Journal of Non-Crystalline Solids,2013,380(12),95.
[21] Koenig A, Herrmann A, Overmann S, et al. Construction and Building Materials,2017,151,405.
[22] Jin M, Zheng Z, Sun Y, et al. Journal of Non-Crystalline Solids,2016,450,116.
[23] Melo A A, Cincotto M A, Repette W L. Cement and Concrete Research,2008,38(4),565.
[24] Collins F, Sanjayan J G. Cement and Concrete Research,2000,30(5),791.
[25] Pavel R. Construction and Building Materials,2010,24(7),1176.
[26] Zhang H Y, Kodur V, Wu B, et al. Construction and Building Materials,2018,163,277.
[27] Peng H, Chen Z K, Cui C, et al. Journal of Building Materials,2017,20(3),63(in Chinese).
彭晖,陈治坤,崔潮,等.建筑材料学报,2017,20(3),63.
[28] Fu X H, Tao W H, Sun F J. Cement Engineering,2008(2),6(in Chinese).
付兴华,陶文宏,孙凤金.水泥工程,2008(2),6.
[29] Liu D J, Wu X, Li J H, et al. Chinese Journal of Environmental Engineering,2018,12(8),229(in Chinese).
刘道洁,吴新,李军辉,等.环境工程学报,2018,12(8),229.
[30] Peng H, Li S L, Cai C S, et al. Bulletin of the Chinese Ceramic Society,2014,33(11),2809(in Chinese).
彭晖,李树霖,蔡春声,等.硅酸盐通报,2014,33(11),2809.
[31] Zhang S Z, Tian Q, Lu A Q. New Building Materials,2016,43(9),22(in Chinese).
张守治,田倩,陆安群.新型建筑材料,2016,43(9),22.
[32] Zhang Y. Study on shrinkage expansion behavior and durability of magnesia concrete.Master’s Thesis, Ningxia University, China,2014(in Chinese).
张莹.氧化镁混凝土收缩膨胀行为及耐久性研究.硕士学位论文,宁夏大学,2014.
[33] Chen C L, Li C M. Concrete,2006(5),45(in Chinese).
陈昌礼,李承木.混凝土,2006(5),45.
[34] Chen X, Yang H Q, Li J Z. Yangtze River,2011,42(4),88(in Chinese).
陈霞,杨华全,李家正.人民长江,2011,42(4),88.
[35] Roy D M. Cement and Concrete Research,1999,29(2),249.
[36] Liu S Y, Cao J J, Cai G H, et al. China Journal of Highway and Transport,2018,31(8),30(in Chinese).
刘松玉,曹菁菁,蔡光华,等.中国公路学报,2018,31(8),30.
[37] Bernal S A, Provis J L, Walkley B, et al. Cement and Concrete Research,2013,53(2),127.
[38] De Vries P, Midden C, Bouwhuis D. Fuel,2005,84(16),2048.
[39] Li Z H, Yang Y M, Chen X W, et al. Journal of Yangtze River Scientific Research Institute,2018,35(7),131(in Chinese).
李兆恒,杨永民,陈晓文,等.长江科学院院报,2018,35(7),131.
[40] Li C C, Shi H, Zhou W L, et al. Bulletin of the Chinese Ceramic Society,2016,35(2),632(in Chinese).
李超超,师华,周文良,等.硅酸盐通报,2016,35(2),632.
[41] Krizan D, Zivanovic B. Cement and Concrete Research,2002,32(8),1181.
[42] Collins F, Sanjayan J G. Cement and Concrete Research,1999,29(4),607.
[43] Li Y, Sun Y. Cement and Concrete Research,2000,30(6),963.
[44] Jin F, Gu K, Al-Tabbaa A. Construction and Building Materials,2014,51(4),395.
[45] Bernal S A, Nicolas R S, Myers R J, et al. Cement and Concrete Research,2014,57(3),33.
[46] Shan J X, Chen W, Tian Y P, et al. Journal of Wuhan University of Technology,2015,37(1),10(in Chinese).
单继雄,陈伟,田亚坡,等.武汉理工大学学报,2015,37(1),10.
[47] Chen W, Chen X X, Duan P. In:the Chinese Ceramic Society Cement Branch Academic Annual Meeting. Beijing,2012(in Chinese).
陈伟,陈晓星,段平.中国硅酸盐学会水泥分会学术年会.北京,2012.
[48] Jang J G, Park S M, Kim G M, et al. Construction and Building Mate-rials,2017,151,178.
[49] Abdalqader A F, Jin F, Al-Tabbaa A. Construction and Building Mate-rials,2015,93,506.
[50] Yan H, Ran Q P, Shu X, et al. Materials China,2017,36(9),645(in Chinese).
严涵,冉千平,舒鑫,等.中国材料进展,2017,36(9),645.
[51] Wang S D, Huang Y B, Wang Z. Journal of the Chinese Ceramic Society,2000,28(6),570(in Chinese).
王绍东,黄煜镔,王智.硅酸盐学报,2000,28(6),570.
[52] Xie Y J, Ma K L, Long G C, et al. Journal of the Chinese Ceramic Society,2006,34(11),1345(in Chinese).
谢友均,马昆林,龙广成,等.硅酸盐学报,2006,34(11),1345.
[53] Jorge O N, Pablo G J, Srubar W V. Construction and Building Materials,2018,186,191.
[54] Ke X Y, Bernal S A, Provis J L. Cement and Concrete Research,2017,100,1.
[55] Yoon H N, Park S M,Lee H K. Construction and Building Materials,2018,178,584.
[56] Duan P, Chen W, Ma J, et al. Construction and Building Materials,2013,48,601.
[57] Duan P, Yan C J, Chen W, et al. Journal of the Chinese Ceramic Society,2014,42(8),1037(in Chinese).
段平,严春杰,陈伟,等.硅酸盐学报,2014,42(8),1037.
[58] Shui Z H, Yu R, Chen Y X, et al. Construction and Building Materials,2018,176,228.
[59] Duan P, Yan C, Zhou W. Construction and Building Materials,2018,160,725.
[60] Ma J, Duan P, Ren D, et al. Journal of Materials Research and Technology,2018,8(1),292.
[61] Chen Y, Yu R, Wang X, et al. Construction and Building Materials,2018,177,51.
[62] Qu Z Y, Yu Q L, Brouwers H J H. Cement and Concrete Research,2018,105,81.
[63] Wu Y, Duan P, Yan C. Applied Clay Science,2018,158,123.
[64] Chen G W, Shui Z H, Duan P, et al. Journal of Wuhan University of Technology,2014,36(8),1(in Chinese).
陈国玮,水中和,段平,等.武汉理工大学学报,2014,36(8),1.
[65] Wang A G, Lv B C, Duan P, et al. Materials Review B: Research Papers,2018,32(5),1707(in Chinese).
王爱国,吕邦成,段平,等.材料导报:研究篇,2018,32(5),1707.
[66] Chen Y X, Shui Z H, Chen W, et al. Bulletin of the Chinese Ceramic Society,2015,34(7),1968(in Chinese).
陈宇轩,水中和,陈伟,等.硅酸盐通报,2015,34(7),1968.
[67] Duan P. Research on modification mechanism and the application of layered double hydroxides for durability of concrete. Ph.D. Thesis, Wuhan University of Technology, China,2014(in Chinese).
段平.层状双氢氧化物改善混凝土耐久性能的机理及应用研究.博士学位论文,武汉理工大学,2014.
[68] Wang L G, Zhang S P, Li D X. Bulletin of the Chinese Ceramic Society,2016,35(7),2128(in Chinese).
王立国,张树鹏,李东旭.硅酸盐通报,2016,35(7),2128.
[69] Li G S, Gao G, Zhu J P, et al. New Chemical Materials,2018,46(6),15(in Chinese).
李根深,高戈,朱建平,等.化工新型材料,2018,46(6),15.
[70] Mohammad B, Alireza J, Fadi A. Construction and Building Materials,2018,181,27.
[71] Wang D, Zhang W, Ruan Y, et al. Construction and Building Materials,2018,189,487.
[72] Ardalan R B, Jamshidi N, Arabameri H, et al. Construction and Building Materials,2017,146,128.
[73] Jalal M, Fathi M, Farzad M. Mechanics of Materials,2013,61,11.
[74] Senff L, Hotza D, Lucas S, et al. Materials Science and Engineering: A (Structural Materials: Properties, Microstructure and Processing),2012,532,354.
[75] Land G, Stephan D. Journal of Materials Science,2012,47(2),1011.
[76] Guo X L, Shi H S, Xia M. Journal of Functional Materials,2016,47(11),1(in Chinese).
郭晓潞,施惠生,夏明.功能材料,2016,47(11),1.
[77] Gao K, Lin K L, Wang D Y, et al. Construction and Building Materials,2014,53(4),503.
[78] Revathi T, Jeyalakshmi R, Rajamane N P. Applied Surface Science,2018,449,322.
[79] Panias D, Giannopoulou I P, Perraki T. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,301(1-3),246.
[80] Guo X L, Shi H S, Dong W J. Cement Technology,2014(2),30(in Chinese).
郭晓潞,施惠生,董文靖.水泥技术,2014(2),30.
[81] Deb P S, Sarker P K, Barbhuiya S. Cement and Concrete Composites,2016,72,235.
[82] Adak D, Sarkar M, Mandal S. Construction and Building Materials,2014,70,453.
[83] Kaur M, Singh J, Kaur M. Construction and Building Materials,2018,190,672.
[84] Behfarnia K, Rostami M. Construction and Building Materials,2017,131,205.
[85] Yang L Y. The modification of microstructure and properties of alkali activated slag.Master’s Thesis, Southeast University, China,2015(in Chinese).
杨凌艳.碱激发矿渣微结构优化及性能研究.硕士学位论文,东南大学,2015.
[86] Deb P S, Nath P, Sarker P K. Materials and Design,2014,62(62),32.
[87] Bakharev T. Cement and Concrete Research,2005,35(6),1233.
[88] Xie Z L, Li X. Concrete,2014(6),55(in Chinese).
谢子令,李显.混凝土,2014(6),55.
[89] Zuo L P, Meng H N, Xu Y M, et al. Ready-mixed Concrete,2018(5),43(in Chinese).
左李萍,蒙海宁,许彦明,等.商品混凝土,2018(5),43.
[90] Shi D, Zhang W S, Ye J Y, et al. Journal of the Chinese Ceramic Society,2017(8),44(in Chinese).
史迪,张文生,叶家元,等.硅酸盐学报,2017(8),44.
[91] Zhang Z, Provis J L, Ma X, et al. Cement and Concrete Composites,2018,92,165.
[92] Kani E N, Allahverdi A, Provis J L. Cement and Concrete Composites,2012,34(1),25.
[93] Zhang Z, Provis J L, Reid A, et al. Cement and Concrete Research,2014,64(10),30.
[94] Jiao X K, Cao Z M, Li T, et al. Non-Metallic Mines,2016,39(4),59(in Chinese).
焦向科,曹志明,李涛,等.非金属矿,2016,39(4),59.
[95] Jiang Z P, Ming W. Journal of Building Materials,2018,21(2),222(in Chinese).
姜正平,明维.建筑材料学报,2018,21(2),222.
[96] Zhu H J, Yao X, Zhang Z H, et al. Non-Metallic Mines,2011,34(3),48(in Chinese).
诸华军,姚晓,张祖华,等.非金属矿,2011,34(3),48.
[97] Graytee A, Sanjayan J G, Nazari A. Ceramics International,2018,44(7),8216.
[98] Somna K, Jaturapitakkul C, Kajitvichyanukul P, et al. Fuel,2011,90(6),2118.
[99] Thostenson E T, Chou T W. Composites Part A (Applied Science and Manufacturing),1999,30(9),1055.
[100] Das S, Mukhopadhyay A K, Datta S, et al. Bulletin of Materials Science,2008,31(7),943.
[101] Tong Y, Xia F, Zhang T, et al. Journal of Shenyang Jianzhu University (Natural Science),2015(2),313(in Chinese).
佟钰,夏枫,张婷,等.沈阳建筑大学学报(自然科学版),2015(2),313.
[102] Dong M, Feng W, Elchalakani M, et al. Ceramics International,2017,43(14),11233.
[103] Muhammad Z, Nasir S, Asif J. Construction and Building Materials,2018,181,227.
[1] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[2] 兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
[3] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[4] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[5] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[6] 赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖. 聚集诱导发红光材料在生物成像领域的应用[J]. 材料导报, 2019, 33(3): 522-535.
[7] 陈道鸽, 熊向源, 龚妍春, 李资玲, 李玉萍. 含Pluronic高分子纳米粒子在药物释放体系的研究现状[J]. 材料导报, 2019, 33(3): 517-521.
[8] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[9] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[10] 肖治国,成岳,唐伟博,余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[11] 冯爱玲,徐榕,王彦妮,张亚妮,林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[12] 曹琛, 郑山锁, 胡卫兵. 酸雨环境下混凝土结构性能研究综述[J]. 材料导报, 2019, 33(11): 1869-1874.
[13] 韦晶, 韩希思, 张承武, 吴琼, 秦晓飞, 李林, 余昌敏, 黄维. 微小RNA纳米递送体系的构建及其研究进展[J]. 材料导报, 2019, 33(1): 16-26.
[14] 张大旺,王栋民. 地质聚合物混凝土研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1519-1527.
[15] 王爱国,吕邦成,刘开伟,马 雪,徐海燕,谭京梅. 珊瑚骨料混凝土性能及微结构的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1528-1533.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed