Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 571-576    https://doi.org/10.11896/cldb.201904001
  无机非金属及其复合材料 |
Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能
朱继红,曾碧榕,罗伟昂,袁丛辉,陈凌南,毛杰,戴李宗
厦门大学材料学院,福建省防火阻燃材料重点实验室,厦门 361005
Preparation and Catalytic Performance of Ag/Pt Nanoparticles Catalyst Supported on Fe3O4@P(St-co-OBEG) Core-Shell Structured Microspheres
ZHU Jihong, ZENG Birong, LUO Wei’ang, YUAN Conghui, CHEN Lingnan, MAO Jie, DAI Lizong
Fujian Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005
下载:  全 文 ( PDF ) ( 5475KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用无皂乳液法合成出具有核壳结构的四氧化三铁@聚(苯乙烯-co-十八醇马来酸聚乙二醇双酯)(Fe3O4@P(St-co-OBEG))磁性聚合物复合微球,并以此为载体制备Ag/Fe3O4@P(St-co-OBEG)和Pt/Fe3O4@P(St-co-OBEG)两种复合催化剂。借助透射电镜和动态光散射表征复合催化剂的形貌和尺寸,并通过紫外可见吸光光度法测试它们的催化性能。实验结果表明两种复合催化剂对硝基苯和4-硝基苯酚的硝基加氢还原反应均具有良好的催化性能。相比Ag/Fe3O4@P(St-co-OBEG),Pt/Fe3O4@P(St-co-OBEG)催化活性更高,这可能与Pt/Fe3O4@P(St-co-OBEG)催化剂中Pt纳米粒子本身的高催化活性和在磁性聚合物载体上较大的比表面积有关,还有可能归因于Pt纳米粒子在Fe3O4@P(St-co-OBEG)上的分布更均匀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱继红
曾碧榕
罗伟昂
袁丛辉
陈凌南
毛杰
戴李宗
关键词:  四氧化三铁  核壳结构  聚合物载体  磁性复合微球  催化性能  负载      纳米粒子    
Abstract: In this work, magnetic composite microspheres Fe3O4@P(St-co-OBEG) were prepared via a surfactant-free emulsion polymerization and were used as carriers to support Ag and Pt to obtain magnetic composite nanocatalysts. It is known that magnetic composite catalysts can not only maintain the catalytic activity of noble metal nanoparticles, but realize magnetic separation. Here, the one-step surfactant-free emulsion polymerization was achieved by using styrene (St) as hydrophobic monomers, octadecyl-butenedioate-poly(ethylene glycol) (OBEG) as surfactant and γ-Fe3O4 as magnetic particles. Besides playing a role of surfactant to stable the solution, the amphiphilic oligomer OBEG also participated in the reaction during the polymerization. In details, the Fe3O4@P(St-co-OBEG) magnetic composite microspheres were prepared by stirring the reaction mixture at 65 ℃ for 24 h under N2 atmosphere. TEM presented a clear core-shell structure of Fe3O4@P(St-co-OBEG) microspheres. The diameter of the core were about 100—120 nm, while the thickness of the shell was in the range of 30—50 nm. Moreover, particle size analysis based on dynamic light scattering (DLS) confirmed an average particle size of about 228 nm. Subsequently, Ag/Fe3O4@P(St-co-OBEG) and Pt/Fe3O4@P(St-co-OBEG) were prepared by simply reducing AgNO3 or H2PtCl6 aqueous solution with dripping NaBH4 under room tempe-rature, and the successful deposition of Ag or Pt nanoparticles on the surfaces of Fe3O4@P(St-co-OBEG) microspheres was observed. Through catalysis tests, both Ag/Fe3O4@P(St-co-OBEG) and Pt/Fe3O4@P(St-co-OBEG) can be regarded as efficient catalysts for the reduction reactions of hydrophobic nitrobenzene and hydrophilic 4-nitrophenol, in which Pt/Fe3O4@P(St-co-OBEG) performed better in catalytic activity compared with Ag/Fe3O4@P(St-co-OBEG). This might be attributed to the more uniform distribution of Pt nanoparticles than Ag nanoparticles on the surfaces of Fe3O4@P(St-co-OBEG) microspheres according to TEM observation.
Key words:  ferroferric oxide    core-shell structure    polymer support    magnetic composite microshperes    catalytic property    loading    silver    pla-tinum    nanoparticles
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  O63  
  TB3  
基金资助: 国家自然科学基金(51573150;51673161);福建科技重大研发平台项目(2014H2006)
作者简介:  朱继红,厦门大学材料学院,2018年6月硕士研究生毕业。课题研究方向为纳米晶/双亲性聚合物杂化体的构筑,申报发明专利3项。戴李宗,博士,厦门大学特聘教授、博士研究生导师。福建省防火阻燃材料重点实验室主任,主要从事防火阻燃材料及功能高分子纳米复合材料的研究。在国内外重要期刊发表文章100多篇,获发明专利授权60余项。
引用本文:    
朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
ZHU Jihong, ZENG Birong, LUO Wei’ang, YUAN Conghui, CHEN Lingnan, MAO Jie, DAI Lizong. Preparation and Catalytic Performance of Ag/Pt Nanoparticles Catalyst Supported on Fe3O4@P(St-co-OBEG) Core-Shell Structured Microspheres. Materials Reports, 2019, 33(4): 571-576.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904001  或          http://www.mater-rep.com/CN/Y2019/V33/I4/571
1 Yu W, Porosoff M D, Chen J G. Chemical Reviews,2012,112(11),5780.2 Zhang Xiaodan,Tian Hua,He Junhui,et al.Acta Chimica Sinica,2013,71(3),433(in Chinese).张晓丹,田华,贺军辉,等.化学学报,2013,71(3),433.3 Bonyasi F, Hekmati M, Veisi H. Journal of Colloid and Interface Science,2017,496,177.4 Giacalone F, Campisciano V, Calabrese C, et al. ACS Nano,2016,10(4),4627.5 Du X, Zhao C, Li X, et al. Journal of Alloys and Compounds,2017,700,83.6 Wang D, Astruc D. Chemical Society Reviews,2017,46(3),816.7 Karakhanov E, Maximov A, Kardasheva Y, et al. ACS Applied Materials & Interfaces,2014,6(11),8807.8 Safaiee M, Zolfigol M A, Afsharnadery F, et al. RSC Advances,2015,5(124),102340.9 Walker J M, Zaleski J M. Nanoscale,2016,8(3),1535.10 Chen L N, Zeng B R, Wu Y G, et al. Polymers for Advanced Technologies,2014,25(9),1069.11 Guo Qinghua,Han Sanyang,Yao Jianlin,et al.Acta Chimica Sinica,2011,69(9),1060(in Chinese).郭清华,韩三阳,姚建林,等.化学学报,2011,69(9),1060.12 Zhou W, Zhou Y, Liang Y, et al. RSC Advances,2015,5(62),50505.13 Yuan C h, Luo W, Zhong L, et al. Angewandte Chemie International Edition,2011,50(15),3515.14 Yuan C H, Xu Y T, Deng Y M, et al. Soft Matter,2009,5(23),4642.15 Pardoe H, Chua-Anusorn W, Pierre T G S, et al. Journal of Magnetism and Magnetic Materials,2001,225(1-2),41.16 Song P, Ruan M, Sun X, et al. The Journal of Physical Chemistry B,2014,118(34),10224.17 Wunder S, Polzer F, Lu Y, et al. The Journal of Physical Chemistry C,2010,114(19),8814.18 黄荣光.贵金属,1983,4(1),51.19 Lv J J, Wang A J, Ma X, et al. Journal of Materials Chemistry A,2015,3(1),290.
[1] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[2] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[3] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[4] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[5] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[6] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[7] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[8] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[9] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[10] 赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖. 聚集诱导发红光材料在生物成像领域的应用[J]. 材料导报, 2019, 33(3): 522-535.
[11] 陈道鸽, 熊向源, 龚妍春, 李资玲, 李玉萍. 含Pluronic高分子纳米粒子在药物释放体系的研究现状[J]. 材料导报, 2019, 33(3): 517-521.
[12] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[13] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[14] 王爱国,郑毅,张祖华,刘开伟,马瑞,孙道胜. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560.
[15] 肖治国,成岳,唐伟博,余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed