Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 1047-1051    https://doi.org/10.11896/cldb.201906025
  高分子与聚合物基复合材料 |
二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布
韩贵华1, 张宝林1, 苏礼超1, 黄银平1, 范子梁2, 赵应征2
1 桂林理工大学材料科学与工程学院,广西有色金属及特色材料加工省部共建国家重点实验室培育基地,桂林 541004
2 温州医科大学药学院,温州 325035
Cellular Distribution of 1,2-dimyristoyl-sn-glycero-3-phosphocholine Modified Iron Oxide Nanoparticles
HAN Guihua1, ZHANG Baolin1, SU Lichao1, HUANG Yinping1, FAN Ziliang2, ZHAO Yingzheng2
1 State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004
2 School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035
下载:  全 文 ( PDF ) ( 2171KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机物包覆的超顺磁性氧化铁纳米粒子(Superparamagnetic iron oxide nanoparticles,SPIONs)因具有良好的水溶性和生物相容性而被越来越多地用作生物医学研究的工具。采用简便的高温热分解法合成聚乙二醇(Polyethylene glycol,PEG)和聚乙烯亚胺(Polyethyleneimine,PEI)修饰的超顺磁性氧化铁纳米粒子(PEG/PEI-SPIONs),再在其表面通过氢键相互作用接枝二肉豆蔻酰磷脂酰胆碱(1, 2-dimyristoyl-sn-glycero-3-phosphocholine, DMPC),成功制备了DMPC-SPIONs。由热重结果分析可知DMPC的接枝率约为31.7%(质量分数)。将PEG/PEI-SPIONs和DMPC-SPIONs分别与PC-12细胞孵化,对孵化后的细胞进行表征和分析发现,大量的DMPC-SPIONs进入了细胞,而PEG/PEI-SPIONs进入细胞内的量较少。这表明DMPC对于氧化铁纳米粒子进入细胞起到关键作用。通过透射电镜观察与DMPC-SPIONs孵化的PC-12细胞发现,氧化铁纳米粒子密集分布于溶酶体、线粒体、内质网和细胞核膜表面,另外,也有一部分DMPC-SPIONs分布在细胞膜上的纤毛附近,并观察到细胞膜对纳米粒子的内吞现象。DMPC-SPIONs良好的膜透过性及在胞内细胞器的密集分布使其在磁热疗、磁共振成像、药物输运等生物医学领域具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩贵华
张宝林
苏礼超
黄银平
范子梁
赵应征
关键词:  超顺磁性氧化铁纳米粒子  修饰  二肉豆蔻酰磷脂酰胆碱  细胞内分布  透射电镜形貌    
Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) coated with organics have been increasingly used in biomedical research in recent years because of their good aqueous dispersibility and biocompatibility, which is essential for nanoparticles to enter cells. SPIONs coated with polyethylene glycol (PEG) and polyethyleneimine (PEI) (PEG/PEI-SPIONs) were synthesized by high temperature thermal decomposition method, then PEG/PEI-SPIONs were modified with 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) by hydrogen bonding interactions to obtain DMPC-SPIONs, and thermogravimetric analysis showed that the mass fraction of DMPC on the surface of SPIONs was 31.7wt%. The research on the uptake of PEG/PEI-SPIONs and DMPC-SPIONs by PC-12 cells showed that much more DMPC-SPIONs entered the cells, whereas relatively fewer PEG/PEI-SPIONs were observed in the cells. The results showed that DMPC played an important role in increasing the entry of SPIONs into cells. DMPC-SPIONs were densely distributed in the lysosomes, mitochondria, endoplasmic reticulum and around the nuclei in PC-12 cells. Some DMPC-SPIONs remained in the vicinity of cilia. The endocytosis process of DMPC-SPIONs was observed. DMPC-SPIONs have great potential to be used as hyperthermia agents, MRI contrast agents and drug transportation carriers.
Key words:  superparamagnetic iron oxide nanoparticles (SPIONs)    modification    1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)    cellular distribution    TEM morphology
                    发布日期:  2019-04-03
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51562007)
作者简介:  韩贵华,桂林理工大学材料科学与工程学院在读硕士研究生(2016—2019),主要从事超顺磁性氧化铁纳米粒子的合成及大鼠脑内分布应用的研究。张宝林,桂林理工大学材料科学与工程学院,教授。
引用本文:    
韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
HAN Guihua, ZHANG Baolin, SU Lichao, HUANG Yinping, FAN Ziliang, ZHAO Yingzheng. Cellular Distribution of 1,2-dimyristoyl-sn-glycero-3-phosphocholine Modified Iron Oxide Nanoparticles. Materials Reports, 2019, 33(6): 1047-1051.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906025  或          http://www.mater-rep.com/CN/Y2019/V33/I6/1047
1 Wu S J, Liu Y G, Wang S B. Materials Review A:Review Papers,2015,29(7),89(in Chinese).
吴慎剑, 刘源岗, 王士斌. 材料导报:综述篇,2015,29(7),89.
2 Ji X H, Liu J X, Tang J G, et al. Materials Review B:Research Papers,2016,30(6),22(in Chinese).
纪小红,刘继宪, 唐建国, 等. 材料导报:研究篇,2016,30(6), 22.
3 Song M M, Xu H L, Liang J X, et al. Materials Science and Engineering C,2017,77,904.
4 Philip Grossen, Gabriela Québatte, Dominik Witzigmann, et al. Journal of Nanomaterials,2016,2016,1.
5 Luo B H, Wang S Q, Rao R, et al. Nanoscale Research Letters,2016,11(1),227.
6 Julien Nicolas, Simona Mura, Davide Bramblla, et al. Chemical Society Reviews,2013,42(3),1147.
7 Geng X D, Shan X H, Xiong F, et al. Shandong Medical Journal,2012,52(11),1(in Chinese).
耿兴东, 单秀红, 熊非, 等. 山东医药,2012,52(11),1.
8 Gallo J, Long N J, Aboagye E O. Chemical Society Reviews,2013,42(19),7816.
9 Zhou L J, Liu J P, Xiong F, et al. Journal of China Medical University,2013,44(4),316(in Chinese).
周丽君, 刘建平, 熊非, 等. 中国医科大学学报,2013,44(4),316.
10 Liu D F, Ding Q, Wen S, et al. In: Conference Record of the 28th Annual Conference of China Chemical Society, Chengdu, 2012,pp.2(in Chinese).
柳东芳, 丁琪, 文颂, 等.中国化学会第28届学术年会,成都,2012,pp.2.
11 Michael Nagel, Stephan Brauckmann, Franzeska Moegle-Hofacker, et al. Biochimica et Biophysica Acta (BBA) - Biomembranes,2015,1848(10),2271.
12 Nazli Ezer, Ipek Sahin, Nadide Kazanci. Vibrational Spectroscopy,2017,89,1.
13 Gianni Ciofani, Giada Graziana Genchi, Barbara Mazzolai, et al. Biochimica et Biophysica Acta (BBA) - Biomembranes,2014,1840,495.
14 Jeong Ah Kim, Nohyun Lee, Byung Hyo Kim, et al. Biomaterials,2011,32,2871.
15 Zhao F Y, Zhang B L, Wang J, et al. Journal of Nanoscience and Nanotechnology,2013,13(10),6793.
16 Xu P F, Shen Z W, Zhang B L, et al. Applied Surface Science,2016,389,560.
17 Zhang S X, Niu H G, Zhang Y Y, et al. Journal of Chromatography A,2012,1238,38.
18 Noga Gal, Andrea Lassenberger, Laia Herrero-Nogareda, et al. ACS Biomaterial Science and Engineering,2017,3,249.
19 Xu S, Olenyuk B Z, Okamoto C T, et al. Advanced Drug Delivery Reviews, 2013,65(1),121.
20 Li Y, Yuan B, Yang K, et al. Nanotechnology, 2017,28(8),85.
21 Zhang J L, Cai Q, Zhao J P. Ultrastructure of the nervous system,Peking Union Medical College Press,China,2011(in Chinese).
张进禄, 蔡青, 赵君朋. 神经系统超微结构,中国协和医科大学出版社,2011.
22 Costanzo Manuela,Scolaro Lucia, Berlier Gloria, et al. International Journal of Pharmaceutics,2016,508(1-2), 83.
23 Zhang X D, Zhang H Q, Liang X,et al. Molecular Pharmaceutics,2016,13,2578.
24 Yang G, Ma W Q, Zhang B L, et al. Materials Science and Engineering C,2016,62,384.
25 Nohyun Lee, Dongwon Yoo, Daishun Ling, et al. Chemical Reviews, 2015,115(19),10637.
26 Reuben Hudson. RSC Advances,2016,6(5),4262.
[1] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[2] 吴成宝, 林列书, 李慎兰, 盖国胜, 杨玉芬. 表面纳米修饰重质碳酸钙的制备及形貌特征和粒度表征[J]. 材料导报, 2019, 33(z1): 149-152.
[3] 张晓宇,许旻,曹生珠. 高导热金刚石/铜复合材料界面修饰研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 443-452.
[4] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[5] 王馨博, 栾志强, 李凯, 栗丽, 唐腾飞. 气凝胶在气体吸附净化中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2214-2222.
[6] 崔国廉, 但年华, 但卫华. 多巴胺表面修饰胶原膜促进细胞粘附和增殖的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 20-24.
[7] 张研, 刘康恺, 孟龙月. 荧光碳量子点的制备及其在生物医用领域的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 126-132.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed