Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2214-2222    https://doi.org/10.11896/j.issn.1005-023X.2018.13.012
  无机非金属及其复合材料 |
气凝胶在气体吸附净化中的应用研究进展
王馨博, 栾志强, 李凯, 栗丽, 唐腾飞
防化研究院国民核生化灾害防护国家重点实验室,北京 100191
Progress in Application of Aerogels as Adsorbents for Gas Purification
WANG Xinbo, LUAN Zhiqiang, LI Kai, LI Li, TANG Tengfei
State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191
下载:  全 文 ( PDF ) ( 1601KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 气凝胶(Aerogels)是一种以空气为介质的轻质多孔性凝聚态物质,由胶体粒子或高聚物分子相互聚集构成独特的纳米多孔三维网络结构。气凝胶的颗粒相和孔隙尺寸均为纳米量级,具有相当高的比表面积和孔隙率、可调控的开放孔隙结构、易于化学修饰的表面以及多样化的种类和形态,其气体吸附量可比同等条件下活性炭吸附量高两个数量级,因此在气体吸附净化领域逐渐受到人们的广泛关注。目前,气体吸附净化领域研究较多的气凝胶主要是SiO2气凝胶和炭气凝胶。此外,近年来对金属氧化物气凝胶以及SiC气凝胶、石墨烯气凝胶、生物质基气凝胶等新型气凝胶的气体吸附应用也有相应的研究报道。   吸附材料对目标气体需要同时具有较高的吸附容量和良好的选择性吸附能力。气凝胶的高比表面积和多孔性质提供了众多的吸附位点,但仅依靠自身物理吸附作用的吸附量有限,对目标气体的选择性不高,在实际吸附应用中,往往由于共存气体组分的竞争吸附影响对目标气体的吸附性能。因此,为了进一步提升气凝胶的吸附容量,提高对目标气体的选择性,研究人员围绕气凝胶修饰改性进行了大量的研究探索工作,并取得了一定的进展。   目前,气凝胶吸附净化研究报道的目标气体主要是温室气体CO2和大气中主要的污染物挥发性有机化合物(VOCs)。针对目标气体的不同可分别通过氨基功能化、氮掺杂等方法引入碱性位点或通过引入非极性官能团对气凝胶进行疏水改性,以提升气凝胶对CO2或VOCs的吸附量和选择性。所采用的修饰改性方式主要有以下两种:一是在湿凝胶形成后或超临界干燥后通过嫁接、浸渍等手段对气凝胶表面进行功能化改性,通过引入特定的官能团或活性组分提升气凝胶对目标气体的吸附量和选择性;另一种是在溶胶-凝胶反应过程中引入功能化前驱体,在分子或纳米尺度上赋予气凝胶网络特定的性能,进而有效平衡活性组分稳定性和对目标气体的吸附性能。此外,对于炭气凝胶,还可通过活化进一步增大比表面积,改善孔隙结构和表面化学性质,从而实现对目标气体污染物吸附性能的优化。   本文归纳了各类气凝胶在CO2与VOCs吸附净化方面的研究进展,介绍了气凝胶的制备过程和结构特点,讨论并对比了不同气凝胶对目标气体的吸附性能与吸附机理,总结了当前气体吸附净化研究中对气凝胶进行修饰改性的主要方法,最后指出提高气凝胶的结构稳定性和吸附速率、设计可同时吸附多种目标气体的气凝胶、缩短制备周期并降低成本是未来研究工作的重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王馨博
栾志强
李凯
栗丽
唐腾飞
关键词:  气凝胶  吸附剂  吸附  气体净化  修饰改性    
Abstract: Aerogels are highly porous light-weight solid materials with unique three-dimensional network structures constructed from colloid particles or polymer molecules, and the whole nanoporous network of aerogels is filled with air. The particles and pore size of aerogels are of nanometer magnitude. Thanks to their high specific surface area and porosity, adjustable open pore structure, easiness of chemical modification and diverse types/forms, the aerogels have received considerable attention as adsorbents for gas purification. The adsorption capacity of aerogels can be two orders of magnitude higher than that of activated carbons under the same condition. Currently, SiO2 aerogels and carbon aerogels are the main research objects in the field of gas adsorption and purification. In addition, metal oxide aerogels and novel aerogels such as SiC aerogels, graphene aerogels and biomass-based aerogels have also been explored for gas adsorption application recently.   The adsorption materials should possess high adsorption capacity and good selectivity for target gases. Although the high specific surface area and porosity of aerogels provide numerous adsorption sites, the adsorption capacity for gases is usually limited only depending on their own physical adsorption and selectivity is unsatisfactory as well. Besides, the adsorption performance of the target gas is often badly affected by the competitive adsorption of the coexisting gas components in practical application. Therefore, aiming to further enhance the adsorption capacity of aerogels and improve the selectivity of target gases, huge researches have carried out around the modification of aerogels and certain progress has been made.   Currently, target gases reported in the aforementioned researches mainly include the major greenhouse gas CO2 and atmospheric pollutants volatile organic compounds (VOCs). Several methods have been proposed to improve the capacity and selectivity of aerogels. For CO2 adsorption, aerogels are principally modified by amino-functionalization and nitrogen-doping to introduce basic sites on the surfaces; and for VOCs adsorption, non-polar organic functional groups are commonly introduced to increase their surface hydrophobicity. The modification methods can be divided into the following two types. One is to functionalize the aerogel surface by graf-ting and impregnation after wet gel formation or supercritical drying, and the adsorption capacity and selectivity of aerogel to target gas can be enhanced by introducing specific functional groups or active components. The other is to introduce functionalized precursors in the sol-gel process which gives the aerogel network specific properties at molecular or nano scale, thus effectively balancing the stability of the active component and the adsorption performance of the target gas. Moreover, the specific surface area, pore structure and surface chemical properties of carbon aerogels can be further improved through activation, and finally the adsorption performance of target gas pollutants can be optimized.   This review offers a retrospection of the research efforts for the application of different aerogels in CO2 and VOCs adsorption. Firstly, the general preparation process and structural characteristics of aerogels are briefly introduced. Then, the adsorption performances and mechanisms of various aerogels are mainly discussed, as well as the summary of primary methods of the aerogel modification. Based on the recent research progress, this review points out the focus of future research including improving the structural stability and adsorption rate of aerogels, designing aerogels capable of adsorbing multiple gases simultaneously, shortening the preparation period and lowering the cost.
Key words:  aerogels    adsorbents    adsorption    gas purification    modification
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TB34  
  X511  
  O647.3  
基金资助: 国家重点研发计划项目(2016YFC0204205)
通讯作者:  栾志强:通信作者,男,1963年生,研究员,博士研究生导师,主要从事核生化防护材料与技术、大气污染净化材料与治理技术的研究 E-mail:luanzhiqiang63@vip.sina.com   
作者简介:  王馨博:男,1993年生,硕士研究生,从事气体吸附净化材料的制备和应用研究 E-mail:wxb1993@mail.ustc.edu.cn
引用本文:    
王馨博, 栾志强, 李凯, 栗丽, 唐腾飞. 气凝胶在气体吸附净化中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2214-2222.
WANG Xinbo, LUAN Zhiqiang, LI Kai, LI Li, TANG Tengfei. Progress in Application of Aerogels as Adsorbents for Gas Purification. Materials Reports, 2018, 32(13): 2214-2222.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.012  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2214
1 Luan Z Q, Hao Z P, Wang X Q. Evaluation of treatment technology of volatile organic compounds for fixed industrial resources[J].Environmental Science,2011,32(12):3476(in Chinese).
栾志强,郝郑平,王喜芹.工业固定源VOCs治理技术分析评估[J].环境科学,2011,32(12):3476.
2 Dutcher B, Fan M H, Russell A G. Amine-based CO2 capture technology development from the beginning of 2013-a review[J].ACS Applied Materials & Interfaces,2015,7(4):2137.
3 Sreedhar I, Vaidhiswaran R, Kamani B M, et al. Process and engineering trends in membrane based carbon capture[J].Renewable and Sustainable Energy Reviews,2017,68:659.
4 Wang X J, Xu X L, Li B, et al. Research progress of biological methods for treating and purifying industrial waste gas[J].Chemical Industry and Engineering Progress,2014,33(1):213(in Chinese).
王小军,徐校良,李兵,等.生物法净化处理工业废气的研究进展[J].化工进展,2014,33(1):213.
5 Ma S M, Zhao Y C, Yang J P, et al. Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma[J].Renewable and Sustainable Energy Reviews,2017,67:791.
6 Ren H J, Koshy P, Chen W F, et al. Photocatalytic materials and technologies for air purification[J].Journal of Hazardous Materials,2017,325:340.
7 Yaumi A L, Abu Bakar M Z, Hameed B H. Recent advances in functionalized composite solid materials for carbon dioxide capture[J].Energy,2017,124:461.
8 Decoste J B, Peterson G W. Metal-organic frameworks for air purification of toxic chemicals[J].Chemical Reviews,2014,114(11):5695.
9 Maleki H. Recent advances in aerogels for environmental remediation applications: A review[J].Chemical Engineering Journal,2016,300:98.
10 Smirnova I, Gurikov P. Aerogels in chemical engineering: Strategies toward tailor-made aerogels[J].Annual Review of Chemical and Biomolecular Engineering,2017,8:307.
11 Kistler S S. Coherent expanded aerogels and jellies[J].Nature,1931,127:741.
12 Aegerter M A, Leventis N, Koebel M M. Aerogels handbook[M].New York:Springer,2011.
13 Zuo L Z, Zhang Y F, Zhang L S, et al. Polymer/carbon-based hybrid aerogels: Preparation, properties and applications[J].Mate-rials,2015,8(10):6806.
14 Gurav J L, Jung I K, Park H H, et al. Silica aerogel: Synthesis and applications[J].Journal of Nanomaterials,2010,2010(24):23.
15 Masika E, Mokaya R. High surface area metal salt templated carbon aerogels via a simple subcritical drying route: preparation and CO2 uptake properties[J].RSC Advances,2013,3(39):17677.
16 Moreno-Castilla C, Maldonado-Hódar F J. Carbon aerogels for catalysis applications: An overview[J].Carbon,2005,43(3):455.
17 Chen D R, Chang X H, Jiao X L. Aerogels in the environment protection[M]∥Fanun M. The role of colloidal systems in environmental protection. Amsterdam: Elsevier,2014:573.
18 Kong Y, Shen X D, Cui S. Nano materials of aerogels[J].Materials China,2016,35(8):569(in Chinese).
孔勇,沈晓冬,崔升.气凝胶纳米材料[J].中国材料进展,2016,35(8):569.
19 Ahmed M S, Attia Y A. Multi-metal oxide aerogel for capture of pollution gases from air[J].Applied Thermal Engineering,1998,18(9-10):787.
20 Choi S, Drese J H, Jones C W. Adsorbent materials for carbon dio-xide capture from large anthropogenic point sources[J].Chemsuschem,2009,2(9):796.
21 Cui S, Cheng W W, Shen X D, et al. Mesoporous amine-modified SiO2 aerogel: A potential CO2 sorbent[J].Energy & Environmental Science,2011,4(6):2070.
22 Begag R, Krutka H, Dong W T, et al. Superhydrophobic amine functionalized aerogels as sorbents for CO2 capture[J].Greenhouse Gases Science & Technology,2013,3(1):30.
23 Linneen N N, Pfeffer R, Lin Y S. CO2 capture using particulate silica aerogel immobilized with tetraethylenepentamine[J].Microporous and Mesoporous Materials,2013,176(4):123.
24 Linneen N N, Pfeffer R, Lin Y S. Amine distribution and carbon dioxide sorption performance of amine coated silica aerogel sorbents: Effect of synthesis methods[J].Industrial & Engineering Chemistry Research,2013,52(41):14671.
25 Wang Z, Dai Z, Wu J J, et al. Vacuum-dried robust bridged silsesquioxane aerogels[J].Advanced Materials,2013,25(32):4494.
26 Wörmeyer K, Smirnova I. Adsorption of CO2, moisture and ethanol at low partial pressure using aminofunctionalised silica aerogels[J].Chemical Engineering Journal,2013,225(6):350.
27 Wörmeyer K, Smirnova I. Breakthrough measurements of CO2 through aminofunctionalised aerogel adsorbent at low partial pressure: Experiment and modeling[J].Microporous and Mesoporous Materials,2014,184:61.
28 Yue C W, Feng J, Jiang Y G, et al. Synthesis and CO2 adsorption performance of amine-loaded silica aerogel[J].Rare Metal Materials and Engineering,2016(S1):545.
29 Kong Y, Jiang G D, Fan M H, et al. A new aerogel based CO2 adsorbent developed using a simple sol-gel method along with supercritical drying[J].Chemical Communications,2014,50(81):12158.
30 Kong Y, Jiang G D, Fan M H, et al. Use of one-pot wet gel or precursor preparation and supercritical drying procedure for development of a high-performance CO2 sorbent[J].RSC Advances,2014,4(82):43448.
31 Kong Y, Shen X D, Cui S. Amine hybrid zirconia/silica composite aerogel for low-concentration CO2 capture[J].Microporous and Mesoporous Materials,2016,236:269.
32 Kong Y, Jiang G D, Wu Y, et al. Amine hybrid aerogel for high-efficiency CO2 capture: Effect of amine loading and CO2 concentration[J].Chemical Engineering Journal,2016,306:362.
33 Kong Y, Shen X D, Fan M H, et al. Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel[J].Chemical Engineering Journal,2016,283:1059.
34 Zhang L, Peng Y X, Zhang J, et al. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials[J].Chinese Journal of Catalysis,2016,37(6):800.
35 Ni X Y, Zhang Z H, Huang Y D, et al. Preparation of nano porous SiO2 aerogel at ambient pressure[J].Journal of Functional Materials,2004,35(Z1):2761(in Chinese).
倪星元,张志华,黄耀东,等.纳米多孔SiO2气凝胶的常压制备及应用[J].功能材料,2004,35(Z1):2761.
36 Zhang Z H, Ni X Y, Chen S W, et al. Ambient pressure preparation, surface structure and adsorption properties of silica aerogels[J].Atomic Energy Science and Technology,2005,39(6):498(in Chinese).
张志华,倪星元,陈世文,等.SiO2气凝胶常压制备、表面结构与吸附性质[J].原子能科学技术,2005,39(6):498.
37 Zhang Z H, Ni X Y, Shen J, et al. Effect of surface characteristics of silica aerogels on adsorption properties[J].Materials Review,2005,19(7):115(in Chinese).
张志华,倪星元,沈军,等.SiO2气凝胶表面特性对其吸附性能的影响[J].材料导报,2005,19(7):115.
38 Zhang Z H, Ni X Y, Shen J, et al. Hydrophobic silica aerogels prepared with ambient pressure drying and its adsorption properties[J].Journal of Tongji University (Natural Science),2005,33(12):1641(in Chinese).
张志华,倪星元,沈军,等.疏水型SiO2气凝胶的常压制备及吸附性能研究[J].同济大学学报(自然科学版),2005,33(12):1641.
39 Ni X Y, Li Y, Zhang Z H, et al. Surface modification and adsorption properties of SiO2 nanoporous aerogels[J].Rare Metal Materials and Engineering,2010,39(4):22.
40 Štandeker S, Novak Z, Knez Ž. Removal of BTEX vapors from waste gas streams using silica aerogels of different hydrophobicity[J].Journal of Hazardous Materials,2009,165(1-3):1114.
41 Wang D, Mclaughlin E, Pfeffer R, et al. Adsorption of organic compounds in vapor, liquid, and aqueous solution phases on hydrophobic aerogels[J].Industrial & Engineering Chemistry Research,2011,50(21):12177.
42 Maldonado-Hódar F J, Moreno-Castilla C, Carrasco-Marín F, et al. Reversible toluene adsorption on monolithic carbon aerogels[J].Journal of Hazardous Materials,2007,148(3):548.
43 Wu D C, Liu X F, Fu Y W. The adsorption of organic vapours on carbon aerogels and their precursor organic aerogels[J].New Carbon Materials,2005,20(4):305(in Chinese).
吴丁财,刘晓方,符若文.炭气凝胶及其有机气凝胶前驱体的吸附性能[J].新型炭材料,2005,20(4):305.
44 Wu D C, Sun Z Q, Fu R W. Structure and adsorption properties of activated carbon aerogels[J].Journal of Applied Polymer Science,2006,99(5):2263.
45 Wang H W. The preparation and application of porous silica and po-rous carbon[D].Shanghai: East China Normal University,2008(in Chinese).
王海文.多孔二氧化硅和多孔碳材料的制备及其应用[D].上海:华东师范大学,2008.
46 Han S J, Bang Y, Kwon H J, et al. Elevated temperature CO2 capture on nano-structured MgO-Al2O3 aerogel: Effect of Mg/Al molar ratio[J].Chemical Engineering Journal,2014,242:357.
47 Khaleel A, Kapoor P N, Klabunde K J. Nanocrystalline metal oxides as new adsorbents for air purification[J].Nanostructured Materials,1999,11(4):459.
48 Robertson C, Mokaya R. Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage[J].Microporous and Mesoporous Materials,2013,179:151.
49 Moon C W, Kim Y, Im S S, et al. Effect of activation temperature on CO2 capture behaviors of resorcinol-based carbon aerogels[J].Bulletin of the Korean Chemical Society,2014,35(1):57.
50 Zhuo H, Hu Y J, Tong X, et al. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture[J].Industrial Crops and Products,2016,87:229.
51 Marques L M, Carrott P J M, Ribeiro Carrott M M L. Amine-modified carbon aerogels for CO2 capture[J].Adsorption Science & Technology,2013,31(2-3):223.
52 Ello A S, Yapo J A, Trokourey A. N-doped carbon aerogels for carbon dioxide (CO2) capture[J].African Journal of Pure and Applied Chemistry,2013,7(2):61.
53 Jeon D H, Min B G, Oh J G, et al. Influence of nitrogen moieties on CO2 capture of carbon aerogel[J].Carbon Letters,2015,16(1):57.
54 Zhang Z S, Zhou J, Xing W, et al. Critical role of small micropores in high CO2 uptake[J].Physical Chemistry Chemical Physics,2013,15(7):2523.
55 Marques L M, Conceicao F L, Ribeiro Carrott M M L, et al. Diffusion of gases in metal containing carbon aerogels[J].Fuel Processing Technology,2011,92(2):229.
56 Carrasco-Marín F, Fairén-Jiménez D, Moreno-Castilla C. Carbon aerogels from gallic acid-resorcinol mixtures as adsorbents of benzene, toluene and xylenes from dry and wet air under dynamic conditions[J].Carbon,2009,47(2):463.
57 Kong Y, Shen X D, Cui S, et al. Use of monolithic silicon carbide aerogel as a reusable support for development of regenerable CO2 adsorbent[J].RSC Advances,2014,4(109):64193.
58 Yun S, Kim H, Lee H, et al. Three-dimensionally macroporous, Si and N-incorporated graphene aerogels for gas adsorbents[J].Mate-rials Express,2015,5(5):463.
59 Wu L R, Qin Z Y, Zhang L X, et al. CNT-enhanced amino-functio-nalized graphene aerogel adsorbent for highly efficient removal of formaldehyde[J].New Journal of Chemistry,2017,41(7):2527.
60 Liu Z M, Wu P. Preparation of chitosan/cellulose aerogel beads and its formaldehyde gas adsorption performance[J].Chemistry and Industry of Forest Products,2017,37(1):27(in Chinese).
刘志明,吴鹏.壳聚糖/纤维素气凝胶球的制备及其甲醛吸附性能[J].林产化学与工业,2017,37(1):27.
61 Alhwaige A A, Agag T, Ishida H, et al. Biobased chitosan hybrid aerogels with superior adsorption: Role of graphene oxide in CO2 capture[J].RSC Advances,2013,3(36):16011.
62 Cui S, Yu S W, Lin B L, et al. Preparation of amine-modified SiO2 aerogel from rice husk ash for CO2 adsorption[J].Journal of Porous Materials,2017,24:455.
63 Zhao C W, Guo Y F, Li W L, et al. Experimental and modeling investigation on CO2 sorption kinetics over K2CO3-modified silica ae-rogels[J].Chemical Engineering Journal,2017,312:50.
64 Marques L M, Carrott P J M, Ribeiro Carrott M M L. Carbon aerogels used in carbon dioxide capture[J].Boletin del Grupo Espaol del Carbón,2016,40:9.
65 Yang G, Luo H C, Ohba T, et al. CO2 capture by carbon aerogel-potassium carbonate nanocomposites[J].International Journal of Chemical Engineering,2016,DOI:10.1155/2016/4012967.
66 Alhwaige A A, Ishida H, Qutubuddin S. Carbon aerogels with excellent CO2 adsorption capacity synthesized from clay-reinforced biobased chitosan-polybenzoxazine nanocomposites[J].ACS Sustai-nable Chemistry & Engineering,2016,4(3):1286.
67 Sui Z Y, Meng Y N, Xiao P W, et al. Nitrogen-doped graphene ae-rogels as efficient supercapacitor electrodes and gas adsorbents[J].ACS Applied Materials & Interfaces,2015,7(3):1431.
68 Dou B J, Li J J, Wang Y F, et al. Adsorption and desorption performance of benzene over hierarchically structured carbon-silica aerogel composites[J].Journal of Hazardous Materials,2011,196:194.
69 Mohammadi A, Moghaddas J. Synthesis, adsorption and regeneration of nanoporous silica aerogel and silica aerogel-activated carbon composites[J].Chemical Engineering Research and Design,2015,94:475.
70 Tang T F, Wang Z J, Luan Z Q, et al. Advances in SiO2 aerogel-activated carbon composites[J].Carbon Techniques,2016,35(6):8(in Chinese).
唐腾飞,王志军,栾志强,等.SiO2气凝胶-活性炭复合材料的研究进展[J].炭素技术,2016,35(6):8.
71 Tang T F, Wang Z J, Luan Z Q, et al. Preparation and hydrophobic modification of SiO2 aerogel/activated carbon composite adsorption materials[J].Carbon Techniques,2017,36(2):35(in Chinese).
唐腾飞,王志军,栾志强,等.SiO2气凝胶/活性炭复合吸附材料的制备与疏水改性研究[J].炭素技术,2017,36(2):35.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[4] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[5] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[6] 苏力军, 张丽娟, 宋寒, 郭慧, 郭建业, 李文静, 杨洁颖, 裴雨辰. 非压力浸渍成型技术制备夹层结构气凝胶外防热材料[J]. 材料导报, 2019, 33(z1): 206-210.
[7] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[8] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[9] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[10] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[11] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[12] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[13] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[14] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[15] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed