Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2208-2213    https://doi.org/10.11896/j.issn.1005-023X.2018.13.011
  无机非金属及其复合材料 |
Ti811表面激光熔覆原位合成TiC-TiB2复合Ti基涂层的微观组织分析
张天刚1, 孙荣禄2,3, 张雪洋1, 刘亚楠2
1 中国民航大学工程技术训练中心,天津 300300;
2 天津工业大学机械工程学院,天津 300387;
3 天津市现代机电装备技术重点实验室,天津 300387
Microstructure of In-situ Synthesized Ti Based TiC-TiB2 Composite Coating on Surface of Ti811 Alloy by Laser Cladding
ZHANG Tiangang1, SUN Ronglu2,3, ZHANG Xueyang1, LIU Yanan2
1 Engineering Technology Training Center, Civil Aviation University of China, Tianjin 300300;
2 School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387;
3 Tianjin Area Major Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387
下载:  全 文 ( PDF ) ( 2529KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在Ti811钛合金表面利用同步送粉激光熔覆技术,制备了TC4+Ni45多道搭接激光熔覆层。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱分析仪(EDS)等分析了涂层组织和相组成,利用显微硬度计测试了涂层的显微硬度。结果表明,涂层微观组织中均匀分布的析出相主要包括基底α-Ti、金属间化合物Ti2Ni、增强相TiB2和增强相TiC。其中,TiC在TiB2表面异质形核,形成了TiC+TiB2的复合相结构;同时,纳米TiC颗粒在涂层基体中弥散分布。由于涂层中TiC与TiB2的共同作用,涂层的显微硬度与基底相比有了显著提高,最高硬度为770HV0.5左右,约为基底硬度的2倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张天刚
孙荣禄
张雪洋
刘亚楠
关键词:  Ti811  激光熔覆  碳化钛  二硼化钛  显微硬度    
Abstract: A multipass TC4 and Ni45 laser cladded layer was prepared on the surface of Ti811 titanium alloy by coaxial powder feeding. Subsequently, the X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and microhardness measurment were adopted to analyze the microstructure, phase composition and performance of the obtained coating. The experiment results confirmed the main uniformly-distributed precipitates in the clad layer, including α-Ti substrate, Ti2Ni intermetallic compound, TiC and TiB2 reinforcement phase. A large amount of TiC/TiB2 multi-phase structures distri-bute in the layer, which consist of the heterogeneous nucleation of spherical or subspheroidal TiC particles on the strip TiB2 surface, and there are numerous nano-TiC particles dispersed in the substrate. The combined action of TiC and TiB2 benefits significantly the cladded layer’s hardness, as the highest microhardness is about 770HV0.5, which is almost twice the value of the substrate.
Key words:  Ti811    laser cladding    titanium carbide    titanium diboride    microhardness
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TG174.44  
  TG156.99  
基金资助: 国家自然科学基金(51371125)
作者简介:  张天刚:男,1978生,博士,副教授,硕士研究生导师,主要从事金属材料激光表面改性的研究工作 E-mail:113099506@qq.com
引用本文:    
张天刚, 孙荣禄, 张雪洋, 刘亚楠. Ti811表面激光熔覆原位合成TiC-TiB2复合Ti基涂层的微观组织分析[J]. 《材料导报》期刊社, 2018, 32(13): 2208-2213.
ZHANG Tiangang, SUN Ronglu, ZHANG Xueyang, LIU Yanan. Microstructure of In-situ Synthesized Ti Based TiC-TiB2 Composite Coating on Surface of Ti811 Alloy by Laser Cladding. Materials Reports, 2018, 32(13): 2208-2213.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.011  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2208
1 Huang Zhanghong, Qu Henglei, Deng Chao, et al. Development and application of aerial titanium and its alloys[J].Materials Review A: Review Papers,2011(1):102(in Chinese).
黄张洪,曲恒磊,邓超,等.航空用钛及钛合金的发展及应用[J].材料导报:综述篇,2011(1):102.
2 Zhang Lijun, Wang Xingyun, Guo Qiyi, et al. Application of tita-nium alloy in Chinese aircraft fastener[J].Aeronautical Manufactu-ring,2013(16):129(in Chinese).
张利军,王幸运,郭启义,等.钛合金材料在我国航空紧固件中的应用[J].航空制造技术,2013(16):129.
3 Yuan Guosen, Yan Lipeng, Han Yanyan. Application progress of titanium alloy[J].Hot Working Technology,2017(4):13(in Chinese).
原国森,兖利鹏,韩艳艳.钛合金的应用进展[J].热加工工艺,2017(4):13.
4 Wang Dongsheng, Tian Zongjun, Shen Lida, et al. Research status and development of laser cladding technology[J].Applied Laser,2012,32(6):538(in Chinese).
王东生,田宗军,沈理达,等.激光熔覆技术研究现状及其发展[J].应用激光,2012,32(6):538.
5 Fan X G, Yang H, Gao P F, et al. Dependence of microstructure morphology on processing in substransus is othermal local loading forming of TA15 titanium alloy[J].Materials Science and Enginee-ring A,2012,546:46.
6 Wang C. Microstructure and temperature field researches on laser in situ formation of (TiBx+TiC)/TiNi composite coatings[D]. Shen-yang: Northeastern University,2014(in Chinese).
王超.激光诱导原位合成(TiBx+TiC)/TiNi复合涂层温度场及显微组织性能研究[D].沈阳:东北大学,2014.
7 Sun Ronglu, Lyu Weixin, Yang Xianjin.Microscopic morphology and distribution of TiC phase in laser clad TiC NiCrSi cermet layer[J].Journal of the Chinese Ceramic Society,2005(12):1448(in Chinese).
孙荣禄,吕伟鑫,杨贤金.激光熔覆TiC-NiCrBSi金属陶瓷涂层中TiC相的形态及分布特征[J].硅酸盐学报,2005(12):1448.
8 Qi Jiqiu. Microstructure and high-temperature deformation behavior of TiC reinforced high-temperature titanium alloy matrix composites produced by melting-casting process[D].Harbin: Harbin Institute of Technology,2013(in Chinese).
戚继球.熔铸法制备TiC增强高温钛合金基复合材料组织与高温变形行为[D].哈尔滨:哈尔滨工业大学,2013.
9 Yin Laisheng. Microstructure and mechanical properties of TiC particles reinforced titanium matrix composites[D].Harbin: Harbin Institute of Technology,2010(in Chinese).
尹来胜.TiC颗粒增强高温钛合金基复合材料组织与性能研究[D].哈尔滨:哈尔滨工业大学,2010.
10 吕维洁.原位合成钛基复合材料的制备、微结构及力学性能[M].北京:高等教育出版社,2005.
11 Xu Xiaodan, Niu Cheng. Preparation of Al-TiC composite coating by laser cladding technology[J].Plating & Finishing,2012(4):10(in Chinese).
徐晓丹,牛成.激光熔覆技术制备新型Al-TiC复合涂层的研究[J].电镀与精饰,2012(4):10.
12 Luo Tao, Liu Bowei, Liu Yong, et al. TiC reinforced titanium matrix composites prepared by multi-component in-situ synthesis[J].Materials Science and Engineering of Powder Metallurgy,2013(5):680(in Chinese).
罗涛,刘伯威,刘咏,等.多组元原位合成TiC颗粒增强钛基复合材料[J].粉末冶金材料科学与工程,2013(5):680.
13 王自东.非平衡凝固理论与技术[M].北京:机械工业出版社,2011.
[1] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[2] 郭宝超, 蒋恩, 陈亮. 压水堆驱动机构钩爪激光与GTAW钴基合金堆焊层组织分析及性能表征[J]. 材料导报, 2019, 33(z1): 416-419.
[3] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[4] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[5] 谢敏, 王梅丰, 戴晓琴, 雷剑波, 王春霞, 周圣丰. 综论偏晶合金的制备技术:外场下凝固、快速凝固及激光技术[J]. 材料导报, 2019, 33(3): 490-499.
[6] 刘健健,朱诚意,李光强. 连铸结晶器铜板表面涂镀层应用研究进展[J]. 材料导报, 2019, 33(17): 2831-2838.
[7] 蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
[8] 郑丽娟, 付宇明, 宗磊, 齐童. 交变磁场对高硬熔覆层成型质量的影响[J]. 材料导报, 2018, 32(6): 905-908.
[9] 王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 589-592.
[10] 赵聪硕,邢志国,王海斗,李国禄,刘喆. 铁碳合金表面激光熔覆的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 418-426.
[11] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[12] 黄本生, 高钰枭, 陈鹏, 李杰, 李光文. 高频感应熔覆TiN/Co涂层组织及性能研究[J]. 《材料导报》期刊社, 2018, 32(13): 2272-2277.
[13] 张天刚,孙荣禄,安通达,张宏伟. Ti811表面单道与多道TC4激光熔覆层微观组织对比[J]. 《材料导报》期刊社, 2018, 32(12): 1983-1987.
[14] 施 麒, Yau Yau Tse, Rebecca Higginson, 陈 峰, 陶麒鹦. 退火热处理对等径角挤压回收Ti-6Al-4V合金微观结构和显微硬度的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1577-1581.
[15] 赵钦,马国政,王海斗,李国禄,陈书赢,周羊羊. 高熵合金涂层制备及其应用的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 65-71.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed