Application Research Progress of Coatings on Copper Plate in Continuous Casting Mould
LIU Jianjian1,2, ZHU Chengyi1,2, LI Guangqiang1,2
1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 2 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081
Abstract: The mould is the most critical component in the continuous casting machine in steelmaking plant. The quality of the mould copper plate directly affects the surface quality of the continuous casting slab, the operating rate and cost of continuous casting production. In the production, the mould copper plate mainly has problems of edge wear, wide surface hot crack, narrow surface shrinkage, corrosion. At present, the focus of research on mould copper plates is to adopt a suitable surface treatment technique to electroplate one or more materials on the surface of the copper plate to obtain a special functional surface. When the thermal conductivity of the mould is required not to be affected by the coatings, various coa-tings with strong bonding with the substrate, good wear resistance and strong thermal corrosion resistance are obtained to improve the surface properties of the copper plate, prolong the service life and improve the quality of the continuous casting slab, which leads to achieving the purpose of reducing the cost of casting steel.The development of high-speed continuous casting imposes higher requirements on the surface properties of the mould. Surface modification techniques such as electroplating, electroless plating, thermal spraying and laser cladding can be used to solve the problems of corrosion resistance and wear resistance of mould copper plate. The coatings of the mould copper plate were developed by Cr plating, Ni plating, Ni-Fe plating and Ni-Co (Co-Ni) coating. Co-Ni alloy coatings have high temperature hardness, good thermal stability and strong electrochemical corrosion resistance, which are ideal copper plate coatings for the mould copper plate, but the cost of Co is high, the plating stress is high when the hardness is high, and the heat exchange resistance is poor. Therefore, researchers have continuously applied new processes and materials to develop different coatings for further improving the surface properties of the mould copper plate in recent years. Coating materials change from alloy coatings to composite coatings, and preparation techno-logy changes from thermal spray to laser cladding. The hardness and wear resistance of the coatings are further improved.The coatings mainly uses Ni and Co as the base phase, and Si, Cr, Zr, W, and P are common hard phases, and Al2O3, carbide, boride, etc. are used as the cera-mic phase to increase the wear resistance of the coatings. The nanomaterials can reduce the grain size of the coatings, and show unique advantages in increasing the bonding force of the coatings, improving the wear resistance and thermal conductivity of the coatings, which has become a research focus for the development of new mould surface coating materials.Using nano-scale ceramic particles with good wear resistance and thermal conductivity on the surface of the mould is an important measure to optimize the properties of the existing coatings. Using multi-layer structure is contribute to improve the bongding strength between the coatings and the substrate. In addition, it has been proved that apply different coatings on different parts of the mould can effectively prolong the life of the mould. The electroplating and thermal spraying coatings are mainly mechanical bonding with the substrate. Because of its low production cost and good wear-resistance and heat-conducting properties, they are widely used in industrial production. The laser cladding layers are metallurgical bonding with the surface of the substrate and they are mainly used for the surface repair of the mould. In this paper, the application status of electroplating, thermal spraying and laser cladding in the surface treatment on the mould is reviewed. The abrasion resistance and application characteristics of the coatings obtained under different preparation conditions are evaluated.Research directions of further improving the surface properties of copper plate in the continuous casting mould are proposed.
刘健健,朱诚意,李光强. 连铸结晶器铜板表面涂镀层应用研究进展[J]. 材料导报, 2019, 33(17): 2831-2838.
LIU Jianjian, ZHU Chengyi, LI Guangqiang. Application Research Progress of Coatings on Copper Plate in Continuous Casting Mould. Materials Reports, 2019, 33(17): 2831-2838.
Fan Zishuan, Pan Jigang, Sun Dongbai, et al. Foundry Technology,2004,25(12),952(in Chinese).樊自拴, 潘继岗, 孙冬柏, 等.铸造技术, 2004, 25(12),952.2 Pandey J C, Raj M, Mishra R, et al.Journal of Failure Analysis & Prevention, 2008, 8(1),3.3 Zhao Jingmei. Research on the surface strengthening technology of copper mould. Master's Thesis, Yanshan University, China,2016(in Chinese).赵静梅. 结晶器铜板表面强化研究.硕士学位论文, 燕山大学, 2016.4 Yu Yundan. Study on properties and electrochemistry mechanism of CoNi based alloy films prepared by magnetic plating technology. Ph.D.Thesis, Ningbo Institute of Materials Technology and Engineering, Chinese Aca-demy of Science,China,2016(in Chinese).余云丹. 磁场诱导下CoNi基合金永磁膜的制备及其机理研究.博士学位论文, 中国科学院宁波材料技术与工程研究所, 2016.5 Liu Linjing. The study on organization sructure and process performance on coatings of mould copper plate. Master's Thesis, Xi'an University of Architecture and Technology,China,2016(in Chinese).刘林静. 结晶器铜板镀层表面组织结构及工艺性能研究. 硕士学位论文,西安建筑科技大学, 2016.6 Geng Zhe, Liu Yang, Zhang Hongjie, et al. China Surface Engineering,2013,26(6),93(in Chinese).耿哲, 刘阳, 张宏杰,等.中国表面工程, 2013, 26(6),93.7 Liu Jiyun, Zhao Yang, Dong Shiyun, et al. Journal of Academy of Armored Force Engineering,2017,31(4),106 (in Chinese).刘霁云, 赵阳, 董世运,等.装甲兵工程学院学报, 2017, 31(4),106.8 Wang Beibei. A study of electroforming Co-Ni alloys for mould. Master's Thesis, Harbin Institute of Technology,China,2012(in Chinese).王蓓蓓. 用于结晶器内镀层的高钴低镍钴镍合金电铸工艺的研究. 硕士学位论文,哈尔滨工业大学, 2012.9 Zhou Longpeng. Study on the texture processing and micro-friction performance of Ni-Co alloy coating.Master's Thesis, China University of Mining and Technology,China,2014(in Chinese).周龙鹏. 镍钴合金镀层的织构化处理及微摩擦性能研究.硕士学位论文,中国矿业大学, 2014.10 Yang Jie. Research on the process and properties of Ni-P alloy deposite by electroplating on cupper. Master's Thesis, East China University of Science and Technology,China,2011(in Chinese).杨杰. 铜基电镀Ni-P合金工艺和性能的研究.硕士学位论文, 华东理工大学, 2011.11 Yuan Qinglong, Hou Wenyi. Journal of TaiYuan University of Technology, 2001, 32(2),162(in Chinese).袁庆龙, 侯文义.太原理工大学学报, 2001, 32(2),162.12 Zhu Chengyi, Yao Huaxin, Ni Hongwei. Electroplating &Finishing,2003,22(2),1(in Chinese).朱诚意, 姚华新, 倪红卫. 电镀与涂饰, 2003, 22(2),1.13 Xiao Zeze. Fabrication of Ni-Fe-W ternary alloy coating by jet electrodeposition. Master's Thesis, Yanshan University, China,2016(in Chinese).肖泽泽. 喷射电沉积制备Ni-Fe-W三元合金镀层工艺研究.硕士学位论文,燕山大学, 2016.14 Wan Anyuan. Materials Protection,2001,34(4),37 (in Chinese).万安元. 材料保护, 2001, 34(4),37.15 Lv Chunlei, Hou Fengyan, Tan Xinghai,et al. Journal of Fudan University (Natural Science),2012,51(2),206 (in Chinese).吕春雷, 侯峰岩, 谭兴海,等. 复旦学报(自然科学版), 2012, 51(2),206.16 Wang Lin, Sun Benliang, Xu Wei, et al. Plating and Finishing,2012,34(5),8 (in Chinese).王琳, 孙本良, 许为,等. 电镀与精饰, 2012, 34(5),8.17 Lekka M, Bonora P L, Lanzutti A, et al.La Metallurgia Italiana, 2013, 104(6),21.18 Xue Ming, Sun Benliang, Zhou Lei. Journal of University of Science and Technology Liaoning,2014,37(2),134(in Chinese).薛明, 孙本良, 周磊. 辽宁科技大学学报, 2014, 37(2),134.19 Zhang Wenfeng, Zhu Di. Corrosion Science and Protection Technology, 2006, 18(5),325(in Chinese).张文峰, 朱荻. 腐蚀科学与防护技术, 2006, 18(5),325.20 Bai Lin, Cheng Dengfu, Liu Peng, et al. Surface Technology, 2017, 46(7),7(in Chinese).白林, 陈登福, 刘鹏,等.表面技术, 2017, 46(7),7.21 Awasthi S, Goel S, Pandey C P, et al. JOM, 2016, 69(2),1.22 Rao Jiangping, Li Guangqiang, Wang Junjie, et al.Journal of Wuhan University of Science and Technology (Natural Science Edition), 2007, 30(4),364(in Chinese).饶江平, 李光强, 王俊杰, 等.武汉科技大学学报, 2007, 30(4), 364.23 Peng Qichun, Li Yuanyuan, Zhu Chengyi, et al. Materials Protection, 2008, 41(1),41(in Chinese).彭其春, 李源源, 朱诚意, 等. 材料保护, 2008, 41(1),41.24 Wang Ting. Study on composite electroplating and laser heat treatment of nano-particle reinforced Ni-Co-Mo plating on mould copper.Master's Thesis, Northeastern University,China,2014(in Chinese).王婷. 结晶器铜板纳米颗粒增强Ni-Co-Mo复合电镀及激光热处理研究.硕士学位论文,东北大学, 2014.25 Sanz A.Surface & Coatings Technology, 2001, 146(9),55.26 Liu Jianjian, Zhu Chengyi, Li Guangqiang, et al. Materials Production, 2018,51(3),77(in Chinese).刘健健,朱诚意,李光强,等.材料保护,2018,51(3),77.27 Kuang Da. Fabrication and properties of the nickel matrix graphene composites. Ph.D. Thesis, Shanghai Jiao Tong University,China,2012(in Chinese).匡达. 石墨烯/镍基复合材料的制备和性能研究.博士学位论文,上海交通大学, 2012.28 Mai Y J, Zhou M P, Ling H J, et al.Applied Surface Science, 2018,433,232.29 Gerasimova A A, Radyuk A G, Titlyanov A E.Steel in Translation, 2016, 46(7),458.30 Gariboldi E, Rovatti L, Lecis N, et al. Surface & Coatings Technology, 2016, 305,83.31 Tiwari S, Christy J V. Procedia Technology, 2016, 23,150.32 Zhu Lin, Zhang Li, Zhao Su, et al. Foundry Technology, 2011, 32(2),242(in Chinese).祝林, 张立, 赵素,等. 铸造技术, 2011, 32(2),242.33 Kong D, Sheng T. Optics & Laser Technology, 2017, 89,86.34 Geng Z, Li S, Duan D L, et al. Wear, 2015, s330-331,348.35 Ahmed R, Faisal N H, Al-Anazi N M,et al.Journal of Thermal Spray Technology, 2015, 24(3),357.36 Geng Z, Hou S, Shi G, et al. Tribology International, 2016, 104,36.37 宋成良.中国专利,CN101524746A,2009.38 Liang B, Zhang Z, Guo H. Transactions of the Indian Institute of Metals, 2016, 69(10),1.39 陈雄伟.中国专利,CN103834896A,2014.40 候晓光.中国专利, CN103317109A,2013.41 朱书成. 中国专利,CN104759596A,2015.42 孙玉福. 中国专利,CN106903281,2017.43 Chen Jian, Wang Xuan, Ma Wanbin, et al. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2015(2),123(in Chinese).陈健, 王璇, 马万斌,等. 江苏科技大学学报(自然科学版), 2015(2),123.44 Niu Yonghui. Microstructure and properties of supersonic plasma sprayed Cr2O3-TiO2 coating on mould plates of CuCrZr alloy. Master's Thesis, Xi'an University of Architecture and Technology, China, 2015(in Chinese).牛永辉. 结晶器CuCrZr铜板表面超音速等离子喷涂Cr2O3-TiO2涂层的组织与性能. 硕士学位论文,西安建筑科技大学, 2015.45 Zhu H, Niu Y, Lin C, et al. Ceramics International, 2013, 39(1),101.46 An Y, Li S, Hou G, et al. Ceramics International, 2017, 43(6),5319.47 Zhang Jian. Fundamental study on supersonic plasma sprayed zirconia coatings on copper plate for continuous casting mould. Master's Thesis, Xi'an University of Architecture and Technology, China,2012(in Chinese).张建. 结晶器铜板表面超音速等离子喷涂制备氧化锆涂层的基础研究.硕士学位论文,西安建筑科技大学, 2012.48 Zhu Langtao, Yang Jun, et al. Materials Protection, 2016,49(1),15(in Chinese).朱浪涛, 杨军,等.材料保护,2016,49(1),15.49 潘太军.中国专利,CN102899600A,2013.50 Gao Sen. Experimental research on the surface strengthening technology of copper mould surface. Master's Thesis, Shanghai Jiao Tong University,2013(in Chinese).高森. 结晶器铜板表面激光熔覆强化的实验研究.硕士学位论文,上海交通大学, 2013.51 Wang Yiyong, Sun Zhengguang, Jin Hui,et al. Functional Materials, 2015,46(20),20148(in Chinese).王一雍, 孙争光, 金辉,等. 功能材料, 2015, 46(20),20148.52 王爱华.中国专利,CN101775525A,2010.53 Yan H, Zhang J, Zhang P, et al.Surface & Coatings Technology, 2013, 232(1),362.54 Chen Suiyuan, Dong Jiang, Chen Jun, et al. Chinese Journal of Lasers, 2011, 38(7),131(in Chinese).陈岁元, 董江, 陈军,等.中国激光, 2011, 38(7),131.55 Chen S, Liang J, Liu C, et al.Applied Surface Science, 2011, 258(4),1443.56 张俊巍.中国专利,CN103447485A,2013.