Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 126-132    https://doi.org/10.11896/j.issn.1005-023X.2017.015.019
  新材料新技术 |
荧光碳量子点的制备及其在生物医用领域的研究进展*
张研1, 刘康恺1, 孟龙月1,2
1 延边大学化学系,延吉 133002;
2 延边大学化工系,延吉 133002;
A Review on Preparation and Biomedical Application of Fluorescent Carbon Dots
ZHANG Yan1, LIU Kangkai1, MENG Longyue1,2
1 Department of Chemistry, Yanbian University, Yanji 133002;
2 Department of Chemical Engineering, Yanbian University, Yanji 133002;
下载:  全 文 ( PDF ) ( 1456KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,碳量子点(CQDs)因具有尺寸可控、易于修饰、低毒性、优异的水溶性及生物相容性等优点吸引了生物医学领域科学家的广泛关注。重点综述了CQDs的制备方法、表面修饰及在生物医用领域的最新进展,总结和展望了CQDs在未来制备中需要解决的问题和研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张研
刘康恺
孟龙月
关键词:  碳量子点  制备方法  表面修饰  生物医用  荧光    
Abstract: In recent years, the carbon dots (CQDs) has acquired considerable concern in biomedicine because of their adjustable particle size, ease of modification, hypotoxicity, good water solubility, and biocompatibility, etc. This review focuses on the various typical preparation method, the surface modification and the biomedical application of fluorescent CQDs, and furthermore, it outlines the unresolved issues and future research direction.
Key words:  carbon dots    preparation method    surface modification    application in biomedicine    fluorescence
               出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TB322  
基金资助: *吉林省教育厅2015年“十二五”自然科学基金(吉教科合字[2015]第12号);国家自然科学基金(51163016)
作者简介:  张研:女,1992年生,硕士研究生,主要从事碳材料研究 孟龙月:通讯作者,女,1983年生,讲师,主要从事碳材料研究 E-mail: lymeng@ybu.edu.cn
引用本文:    
张研, 刘康恺, 孟龙月. 荧光碳量子点的制备及其在生物医用领域的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 126-132.
ZHANG Yan, LIU Kangkai, MENG Longyue. A Review on Preparation and Biomedical Application of Fluorescent Carbon Dots. Materials Reports, 2017, 31(15): 126-132.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.019  或          http://www.mater-rep.com/CN/Y2017/V31/I15/126
1 Xu X Y, Ray R, Gu Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc,2004,126(40):12736.
2 Sun Y P, Zhou B, Ling Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. J Am Chem Soc,2006,128(24):7756.
3 Li Q, Ohulchanskyy T Y, Liu R, et al. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro[J]. J Phys Chem C,2010,114(28):12062.
4 Draganic Z D, Draganic I G. Formation of primary yields of hydroxyl radical and hydrated electron in the gamma-radiolysis of water[J]. J Phys Chem,1973,77(6):765.
5 Zhao Y, Chen T, Zou J, et al. Fabrication and characterization of monodisperse zinc sulfide hollow spheres by gamma-ray irradiation using PSMA spheres as templates[J]. J Cryst Growth,2005,275(3):521.
6 Kim S K, Kwen H D, Choi S H, et al. Fabrication of a microbial biosensor based on QD-MWNT supports by a one-step radiation rea-ction and detection of phenolic compounds in red wines[J]. Sensors,2011,11(2):2001.
7 Zhao S J, Lan M H, Zhu X Y, et al. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging[J]. ACS Appl Mater Interfaces, 2015,7(31):17054.
8 Xue M Y, Zou M B, Zhao J J, et al. Green preparation of fluorescent carbon dots from lychee seeds and their application for the selective detection of methylene blue and imaging in living cells[J]. J Mater Chem B,2015,3(33):6783.
9 Aslands A M, Balci N, Arik M, et al. Liquid nitrogen-assisted synthesis of fluorescent carbon dots from Blueberry and their perfor-mance in Fe3+ detection[J]. Appl Surf Sci,2015,356:747.
10 Zhong D, Miao H, Yang K C, et al. Carbon dots originated from carnation for fluorescent and colorimetric pH sensing[J]. Mater Lett,2016,166:89.
11 Konwar A, Gogoi N, Majumdar G, et al. Green chitosan-carbon dots nanocomposite hydrogel film with superior properties[J]. Carbohydr Polym,2015,115:238.
12 Yuan M, Zhong R, Gao H Y, et al. One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing[J]. Appl Surf Sci,2015,355:1136.
13 Hu X H, An X Q, Li L L. Easy synthesis of highly fluorescent carbon dots from albumin and their photoluminescent mechanism and biological imaging applications[J]. Mater Sci Eng C, 2016,58:730.
14 Gedda G, Lee C Y, Lin Y C, et al. Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions[J]. Sens Actuat B: Chem,2016,224: 396.
15 Purbia R, Paria S. A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots[J]. Biosens Bioelectron, 2016,79:467.
16 Hou J Y, Dong G J, Tian Z B, et al. A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu(Ⅱ) system[J]. Food Chem,2016,202:81.
17 Yang X M, Zhuo Y, Zhu S S, et al. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging[J]. Biosens Bioelectron,2014,60:292.
18 Chai L J, Zhou J, Feng H, et al. A reversible fluorescence nanoswitch based on carbon quantum dots nanoassembly for detection of pyrophosphate ion[J]. Sens Actuat B:Chem,2015,220:138.
19 Lan J, Liu C F, Gao M X, et al. An efficient solid-state synthesis of fluorescent surface carboxylated carbon dots derived from C60 as a label-free probe for iron ions in living cells[J]. Talanta,2015,144:93.
20 Ni P J, Dai H C, Li Z, et al. Carbon dots based fluorescent sensor for sensitive determination of hydroquinone[J]. Talanta,2015,144:258.
21 Zhou M, Zhou Z L, Gong A H, et al. Synthesis of highly photoluminescent carbon dots via citric acid and Tris for iron(Ⅲ) ions sensors and bioimaging[J]. Talanta,2015,143:107.
22 Saud P S, Pant B, Alam A M, et al. Carbon quantum dots anchored TiO2 nanofibers: Effective photocatalyst for waste water treatment[J]. Ceram Int,2015,41:11953.
23 Barati A, Shamsipur M, Abdollahi H. Hemoglobin detection using carbon dots as a fluorescence probe[J]. Biosens Bioelectron,2015,71:470.
24 Wang Y, Kim S H, Feng L. Highly luminescent N, S-Co-doped carbon dots and their direct use as mercury(Ⅱ) sensor[J]. Anal Chim Acta,2015,890:134.
25 Wang F, Pang S P, Wang L, et al. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents[J]. Chem Mater,2010,22(16):4528.
26 Zong J, Zhu Y H, Yang X L, et al. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors[J]. Chem Commun,2011,47(2):764.
27 Song Y G, Chen J Y, Hu D Q, et al. Ratiometric fluorescent detection of biomakers for biological warfare agents with carbon dots chelated europium-based nanoscale coordination polymers[J]. Sens Actuat B:Chem,2015,221:586.
28 Yang Y, Zhang J C, Zhuang J, et al. Synthesis of nitrogen-doped carbon nanostructures from polyurethane sponge for bioimaging and catalysis[J]. Nanoscale,2015,7(29):12284.
29 Xu M G, Xu S S, Yang Z, et al. Hydrophilic and blue fluorescent N-doped carbon dots from tartaric acid and various alkylol amines under microwave irradiation[J]. Nanoscale,2015, 7(38):15915.
30 Liu H P, Ye T D, Mao C. Fluorescent carbon nanoparticles derived from candle soot[J]. Angew Chem Int Ed,2007,46(34):6473.
31 Gong P W, Hou K M, Ye X Y, et al. Synthesis of highly luminescent fluorinated graphene quantumdots with tunable fluorine cove-rage and size[J]. Mater Lett,2015,143:112.
32 Hu S L, Liu J, Yang J L, et al. Laser synthesis and size tailor of carbon quantum dots[J]. J Nanoparticle Res,2011,13(12):7247.
33 Russo P, Hu A, Compagnini G, et al. Femtosecond laser ablation of highly oriented pyrolytic graphite: A green route for large-scale production of porous graphene and graphene quantum dots[J]. Nanoscale,2014,6(4):2381.
34 Muthulingam S, Lee I H, Uthirakumar P. Highly efficient degradation of dyes by carbon quantum dots/N-doped zinc oxide (CQD/N-ZnO) photocatalyst and its compatibility on three different commercial dyes under daylight[J]. J Colloid Interface Sci,2015,455:101.
35 Zaahir S, Vijayakumar E, Subramania A, et al. Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoa-node for dye sensitized solar cells[J]. Solar Energy Mater Solar Cells,2015,143:250.
36 Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property[J]. Dalton Trans,2012,41(31):9526.
37 Shinde D B, Pillai V K. Electro chemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes[J]. Chemistry—A Eur J,2012,18(39):12522.
38 Zhang X M, Ke H, Zhang S Y, et al. One-step electrosynthesis and photoelectric conversion of selenium nanowires wrapped with graphene quantum dots[J]. Electrochim Acta,2015,168:116.
39 Chen Y F, Wu Y Y, Weng B, et al. Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe(Ⅲ) ions detection and cell imaging[J]. Sens Actuat B:Chem,2016,223:689.
40 Edison T N J I, Atchudan R, Shim J J,et al. Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging[J]. J Photochem Photobiol B:Biology,2016,158:235.
41 Yang X D, Yang X, Li Z Y, et al. Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells[J]. J Colloid Interface Sci,2015,456:1.
42 Wei C, Huang Q T, Hu S R, et al. Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode[J]. Electrochim Acta, 2014,149:237.
43 Reddy Prasad P, Naidoo E B. Ultrasonic synthesis of high fluorescent C-dots and modified with CuWO4 nanocomposite for effective photocatalytic activity[J]. J Mol Struct,2015,1098:146.
44 Sun Yingxiang. Fluorescent carbon dots: Synthesis, characterization and application[D]. Zibo: Shandong University of Technology,2014(in Chinese).
孙英祥. 荧光碳点的制备表征及应用[D]. 淄博: 山东理工大学,2014.
45 Dubey P, Tripathi K M, Mishra R, et al. A simple one-step hydrothermal route towards water solubilization of carbon quantum dots from soya-nuggets for imaging applications[J]. RSC Adv,2015,5(106):87528.
46 Xu H B, Zhou S H, Xiao L L, et al. Nanoreactor-confined synthesis and separation of yellow-luminescent graphene quantum dots with a recyclable SBA-15 template and their application for Fe(Ⅲ) sensing[J]. Carbon,2015,87:215.
47 Kwon W, Rhee S W. Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles[J]. Chem Commun,2012,48(43):5256.
48 Jiang C K, Wu H, Song X J. et al. Presence of photoluminescent carbon dots in Nescafe original instant coffee: Applications to bioi-maging[J]. Talanta,2014,127:68.
49 Matai I, Sachdev A, Gopinath P. Self-assembled hybrids of fluorescent carbon dots and PAMAM dendrimers for epirubicin delivery and intracellular imaging[J]. ACS Appl Mater Interfaces,2015,7(21):11423.
50 Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[J]. Chem Mater,2009,21(23):5563.
51 Niu W J, Li Y, Zhu R H, et al. Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging[J]. Sens Actuat B:Chem,2015,218:229.
52 Li Chuanxi. Design&synthesis of phosphorus-doped carbon based materials and their application in catalysis[D]. Suzhou: Soochow University,2015(in Chinese).
李传熙. 磷掺杂碳基材料的设计、合成及其催化性能的研究[D]. 苏州: 苏州大学,2015.
53 Khaled Habiba, Dina P Bracho-Rincon, Jose A. Synergistic antibacterial activity of PEGylated silver-graphene quantum dots nanocomposites[J]. Appl Mater Today,2015,1:80.
54 Tian L, Ghosh D, Chen W, et al. Nanosized carbon particles from natural gas soot[J]. Chem Mater,2009,21(13):2803.
55 Yan Zhengyu, Xiao An, Lu Hua, et al. Determination of metro-nidazole by a flow-injection chemiluminescence method using ZnO-doped carbon quantum dots[J].New Carbon Mater,2014,29(3):216 (in Chinese).
严拯宇, 肖岸, 吕华,等.ZnQ掺杂碳量子点的流动注射化学发光法测定甲硝唑[J]. 新型炭材料,2014,29(3):216.
56 Sheng Y Z, Wei J M, Pan J Q, et al. The up-converted photoluminescence and cell imaging of water-soluble carbon dots[J]. Chem Phys Lett,2015,638:196.
57 Luo P J G, Sahu S, Yang S T, et al. Carbon “quantum” dots for optical bioimaging[J]. J Mater Chem B:Chem,2013,1(16):2116.
58 Zhu S J, Zhang J H, Qiao C Y, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications[J]. Chem Commun,2011,47(24):6858.
59 Hsu P C, et al. Synthesis and analytical applications of photoluminescent carbon nanodots[J]. Green Chem,2012,14(4):917.
60 Ray S C, Saha A, Jana N R, et al. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application[J]. J Phys Chem C,2009,113(43):18546.
61 Li H T, He X D, Liu Y, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties[J]. Carbon,2011,49(2):605.
62 Jia X F, Li J, Wang E K. One-pot green synthesis of optically pH-sensitive carbon dots with up conversion luminescence[J]. Nanoscale,2012,4(18):5572.
63 Zhu S J, Zhang J H, Liu X, et al. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission[J]. RSC Adv,2012,2(7):2717.
64 Shen J H, Zhu Y H, Chen C, et al. Facile preparation and up conversion luminescence of graphene quantum dots[J]. Chem Commun,2011,47(9):2580.
65 Li N, Liang X F, Wang L L, et al. Biodistribution study of carbon dots in cells and in vivo for optical imaging[J]. J Nanoparticle Res,2012,14(10):11771.
66 Yang S T, Cao L, Luo P G, et al. Carbon dots for optical imaging in vivo[J]. J Am Chem Soc, 2009,131(32):11308.
67 Yang S T, Wang X, Wang H F, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. J Phys Chem C,2009,113(42):18110.
68 Zhou L, Li Z H, Liu Z, et al. Luminescent carbon dot-gated nano vehicles for pH-triggered intracellular controlled release and imaging[J]. Langmuir,2013,29(21):6396.
69 Ding H, Du F Y, Liu P C, et al. DNA-carbon dots function as fluorescent vehicles for drug delivery[J]. ACS Appl Mater Interfaces,2015,7(12):6889.
[1] 吴成宝, 林列书, 李慎兰, 盖国胜, 杨玉芬. 表面纳米修饰重质碳酸钙的制备及形貌特征和粒度表征[J]. 材料导报, 2019, 33(z1): 149-152.
[2] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[3] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[4] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[5] 刘文, 李婷婷, 张冰, 张荣, 刁海鹏, 常宏宏, 魏文珑. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报, 2019, 33(3): 402-409.
[6] 卢伶,张祥,赵青华. 热激活延迟荧光材料在有机电致发光器件中的研究进展[J]. 材料导报, 2019, 33(15): 2589-2601.
[7] 许萍, 任恒阳, 魏智刚, 汪长征. 碳钢表面混合与单种细菌腐蚀作用对比研究[J]. 材料导报, 2019, 33(12): 2055-2061.
[8] 吴美容, 赖琼宇, 周佳, 倪赟, 吴琼, 张承武, 于海东, 李林. 基于荧光法纸基器件在体外疾病检测中的应用进展[J]. 材料导报, 2019, 33(1): 48-55.
[9] 赵鸣岐, 黄威嫔, 胡米, 任科峰, 计剑. 生物医用材料表面高分子基涂层的功能化构筑[J]. 材料导报, 2019, 33(1): 27-39.
[10] 赵立臣, 宋玉婷, 张喆, 王新, 王铁宝, 崔春翔. 可降解生物医用Zn-1Al合金的制备及性能研究[J]. 《材料导报》期刊社, 2018, 32(7): 1192-1196.
[11] 刘兰燕,宋俊,程博闻,薛文池,郑云波. 木质素基碳纤维制备的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 405-411.
[12] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[13] 杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
[14] 朱琦,李云辉,赵学森,耿爱芳,马玉芹. 新型有机电致荧光材料研究进展[J]. 材料导报, 2018, 32(19): 3473-3477.
[15] 王春来,李钒,杨焜,刘长军,田丰. 碳量子点-二氧化钛复合光催化剂的研究进展[J]. 材料导报, 2018, 32(19): 3348-3357.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed