Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23110162-7    https://doi.org/10.11896/cldb.23110162
  高分子与聚合物基复合材料 |
绿光到深红光的有效调控:二苯并吡啶并喹喔啉类热激活延迟荧光材料
章博1, 黄飞翔1, 谢凤鸣2, 杨耀祖1, 胡英元1, 赵鑫1,*
1 苏州科技大学化学与生命科学学院, 江苏 苏州 215009
2 苏州大学功能纳米与软物质研究院, 江苏省碳基功能材料与器件重点实验室, 江苏 苏州 215123
Efficient Regulation of Emission Color from Green to Deep-red: Dibenzo [f, h] pyrido[3, 4-b] Quinoxaline Acceptor Based TADF Emitters
ZHANG Bo1, HUANG Feixiang1, XIE Fengming2, YANG Yaozu1, HU Yingyuan1, ZHAO Xin1,*
1 College of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
下载:  全 文 ( PDF ) ( 8898KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高效热激活延迟荧光(Thermally activated delayed fluorescence,TADF)材料在有机发光二极管(Organic light-emitting diodes,OLED)中有着重要的应用。然而,由于能隙定律的限制,开发波长超过600 nm的高效红色TADF材料充满了挑战。本工作在设计合成刚性大共轭平面受体二苯并[f,h]吡啶[3,4-b]喹喔啉(DBPQ)的基础上,将不同给电子能力的供体(tCz、DMAC和PXZ)与受体DBPQ大扭角连接,合成了DBPQtCz、DBPQDMAC和DBPQPXZ三种新颖的TADF材料。随着相应供体给电子能力的增强,DBPQtCz、DBPQDMAC和DBPQPXZ的发射波长可有效调控,实现由绿光、红光到深红光的转变。基于DBPQDMAC器件的最大外量子效率(EQEmax)最高可达16.0%,电致发光(Electroluminescent,EL)波长为612 nm;基于DBPQPXZ器件的EQEmax为3.2%,电致发光波长达到658 nm。同时,基于DBPQtCz、DBPQDMAC和DBPQPXZ的OLED均具有较低的开启电压,分别为2.4、2.5和2.8 V。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
章博
黄飞翔
谢凤鸣
杨耀祖
胡英元
赵鑫
关键词:  热激活延迟荧光  二苯并[f,h]吡啶[3,4-b]喹喔啉  开启电压  红光发射    
Abstract: Efficient thermally activated delayed fluorescence (TADF) emitters have an important application for organic light-emitting diodes (OLEDs). However, due to the limitations of the energy gap law, the development of efficient red TADF emitters with wavelengthsover 600 nm is challenging. Herein, a novel rigid larger conjugated planar acceptor dibenzo[f, h]pyrido[3, 4-b] quinoxaline (DBPQ) had been designed, and three TADF materials, namely DBPQtCz, DBPQDMAC and DBPQPXZ, were synthesized by connecting with different donors (tCz, DMAC and PXZ) to DBPQ. With the enhancement of electron-donating ability of the corresponding donors, the emission wavelengths of DBPQtCz, DBPQDMAC and DBPQPXZ were significantly red-shifted and turned from green, red to deep-red. The OLED based on DBPQDMAC obtained maximum external quantum efficiency (EQEmax) up to 16.0%, and the peak electroluminescent (EL) of 612 nm, while the EQEmax of DBPQPXZ is 3.2%, and the peak EL is 658 nm. Meanwhile, the OLEDs based on DBPQtCz, DBPQDMAC and DBPQPXZ achieved extremely low turn-on voltages of 2.4, 2.5 and 2.8 V, respectively.
Key words:  thermally activated delayed fluorescence    dibenzo[f,h] pyrido [3,4-b] quinoxaline    turn-on voltage    red emission
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  O621.22  
基金资助: 国家自然科学基金(21905048)
通讯作者:  *赵鑫,苏州科技大学教授,硕士研究生导师。主要从事有机光电功能材料的设计、合成及应用研究。zhaoxinsz@usts.edu.cn   
作者简介:  章博,苏州科技大学硕士研究生,在赵鑫教授的指导下进行研究。主要从事有机光电材料的合成与性能研究。
引用本文:    
章博, 黄飞翔, 谢凤鸣, 杨耀祖, 胡英元, 赵鑫. 绿光到深红光的有效调控:二苯并吡啶并喹喔啉类热激活延迟荧光材料[J]. 材料导报, 2025, 39(1): 23110162-7.
ZHANG Bo, HUANG Feixiang, XIE Fengming, YANG Yaozu, HU Yingyuan, ZHAO Xin. Efficient Regulation of Emission Color from Green to Deep-red: Dibenzo [f, h] pyrido[3, 4-b] Quinoxaline Acceptor Based TADF Emitters. Materials Reports, 2025, 39(1): 23110162-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110162  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23110162
1 Yang H Y, Zhang H Y, Zhang M, et al. Chemical Engineering Journal, 2023, 468, 143721.
2 Xie F M, Zeng X Y, Zhou J X, et al. Journal of Materials Chemistry C, 2020, 8(44), 15728.
3 Xie F M, Wu P, Zou S J, et al. Advanced Electronic Materials, 2020, 6(1), 1900843.
4 Li H, Shu H, Wang X, et al. Dyes and Pigments, 2021, 184, 108810.
5 Wang H, Wang K, Chen J X, et al. Advanced Functional Materials, 2023, 33(41), 2304398.
6 Fan X, Hao X, Huang F, et al. Advanced Science, 2023, 10(28), 2303504.
7 Zhou C, Cao C, Yang D, et al. Materials Chemistry Frontiers, 2021, 5(7), 3209.
8 Dong R, Liu D, Li J, et al. Materials Chemistry Frontiers, 2022, 6(1), 40.
9 Si C, Hu Y N, Sun D, et al. Journal of Materials Chemistry C, 2023, 11(36), 12174.
10 Fecková M, Kalis I K, Roisnel T, et al. Chemistry-A European Journal, 2021, 27(3), 1145.
11 Qu L, Xiao H, Zhang B, et al. Chemical Engineering Journal, 2023, 471, 144709.
12 Long Y, Chen K, Li C, et al. Chemical Engineering Journal, 2023, 471, 144759.
13 Sun K, Cai Z, Jiang J, et al. Dyes and Pigments, 2020, 173, 107957.
14 Kumsampao J, Chaiwai C, Chasing P, et al. Chemistry—An Asian Journal, 2020, 15(19), 3029.
15 Gong X, Li P, Huang Y H, et al. Advanced Functional Materials, 2020, 30(16), 1908839.
16 Liang J, Li C, Cui Y, et al. Journal of Materials Chemistry C, 2020, 8(5), 1614.
17 Zhu L, Liu Y, Wang X, et al. Chemical Engineering Journal, 2023, 473, 145449.
18 Kothavale S, Kim S C, Cheong K, et al. Advanced Materials, 2023, 35(13), 2208602.
19 Zhang H Y, Yang H Y, Zhang M, et al. Materials Horizons, 2022, 9(9), 2425.
20 Chen J X, Xiao Y F, Wang K, et al. Angewandte Chemie International Edition, 2021, 133(5), 2508.
21 Zhao T, Jiang S, Wang Y, et al. ACS Applied Materials & Interfaces, 2023, 15(25), 30543.
22 Chen J X, Tao W W, Chen W C, et al. Angewandte Chemie International Edition, 2019, 131(41), 14802.
23 Wang S, Yan X, Cheng Z, et al. Angewandte Chemie International Edition, 2015, 54(44), 13068.
24 Yang Z, Ge X, Li W, et al. Chemical Engineering Journal, 2022, 442, 136219.
25 Gao T, Shen S, Qin Y, et al. Journal of Materials Chemistry C, 2022, 10(45), 17053.
26 Xiao F, Wang M, Lei Y, et al. Chemistry—An Asian Journal, 2020, 15(21), 3437.
27 Luo J, Xie Z, Lam J W Y, et al. Chemical Communications, 2001 (18), 1740.
28 Chen S, Zeng P, Wang W, et al. Journal of Materials Chemistry C, 2019, 7(10), 2886.
29 Nasiri S, Macionis S, Gudeika D, et al. Journal of Luminescence, 2020, 220, 116955.
30 Che W, Xe Y, Li Z. Asian Journal of Organic Chemistry, 2020, 9(9), 1262.
31 Xie F M, Li H Z, Dai G L, et al. ACS Applied Materials & Interfaces, 2019, 11(29), 26144.
32 Huang T, Liu D, Jiang J, et al. Chemistry—A European Journal, 2019, 25(46), 10926.
33 Si C, Hu Y N, Sun D, et al. Journal of Materials Chemistry C, 2023, 11(36), 12174.
34 Becke A D. The Journal of Chemical Physics, 1993, 98(2), 1372.
35 Zhang Q, Kuwabara H, Potscavage Jr W J, et al. Journal of the American Chemical Society, 2014, 136(52), 18070.
36 Wang Z, Zhu X, Zhang S, et al. Advanced Optical Materials, 2021, 9(5), 2001764.
37 Liu H, Liu H, Fan J, et al. Advanced Optical Materials, 2020, 8(21), 2001027.
38 Kandi D, Mansingh S, Behera A, et al. Journal of Luminescence, 2021, 231, 117792.
39 Zhang H, Li A, Li G, et al. Advanced Optical Materials, 2020, 8(14), 1902195.
40 Huo J, Zheng Y, Zhang D, et al. Dyes and Pigments, 2021, 196, 109781.
41 Zeng J, Guo J, Liu H, et al. Advanced Functional Materials, 2020, 30(17), 2000019.
42 Wu C, Zhang Y, Ma D, et al. Dyes and Pigments, 2020, 173, 107895.
[1] 王达浩, 谢凤鸣, 魏怀鑫, 胡英元, 赵鑫. 双苯磺酰基苯类延迟荧光材料的合成及电致发光性质[J]. 材料导报, 2023, 37(4): 21060007-5.
[2] 姚静锋, 李昊泽, 吴平, 谢凤鸣, 胡英元, 赵鑫. 具有分子间电荷转移效应的D-σ-A型热激活延迟荧光材料及其电致发光性能[J]. 材料导报, 2023, 37(14): 22010216-8.
[3] 卢伶,张祥,赵青华. 热激活延迟荧光材料在有机电致发光器件中的研究进展[J]. 材料导报, 2019, 33(15): 2589-2601.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed