Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23040116-11    https://doi.org/10.11896/cldb.23040116
  无机非金属及其复合材料 |
热敏型碳点作为温度传感材料的研究进展
郭丁萌1, 李晓玉1, 孙天懿1, 连海兰1,2,*
1 南京林业大学材料科学与工程学院,南京 210037
2 南京林业大学林业资源高效加工利用协同创新中心,南京 210037
Research Progress of Thermosensitive Carbon Dots as Temperature Sensing Materials
GUO Dingmeng1, LI Xiaoyu1, SUN Tianyi1, LIAN Hailan1,2,*
1 College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
2 Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China
下载:  全 文 ( PDF ) ( 30994KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高灵敏度的非接触式温度传感在活细胞及活体的生物分析、空气动力学研究、光电功能体系研究及食品货物包装涂层的温度监测等领域有着广泛的应用。荧光蛋白、有机化合物、碳点、金属纳米颗粒、稀土掺杂纳米颗粒和半导体量子点等已经被应用于温度传感器。其中碳点具有水溶性好、光稳定性高、生物相容性高、生物毒性小、制备方法简便、原材料来源丰富等优势,能克服传统金属量子点易猝灭、易团聚和对环境有害等缺点,逐渐成为其他温度传感器的替代品。本文梳理了热敏型碳点的制备方法、性能表现和应用领域,综述了其荧光变化规律和温度-荧光的线性关系,并分析总结了目前仍存在的问题及未来的发展趋势,为后续研究学者提供思考和学习的理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭丁萌
李晓玉
孙天懿
连海兰
关键词:  碳点  温度传感  荧光性能  杂原子掺杂  热灵敏度    
Abstract: High sensitivity non-contact temperature sensor has been widely used in biological analysis of living cells and living bodies, aerodynamics research, photoelectric functional system research and temperature monitoring of food and cargo packaging coatings. Fluorescent proteins, organic compounds, carbon dots, metal nanoparticles, rare earth doped nanoparticles and semiconductor quantum dots have been proved to be applied to temperature sensors. Among them, carbon dots have the advantages of good water solubility, high light stability, high biocompatibility, low biological toxicity, simple preparation methods, rich sources of raw materials, etc. They can overcome the shortcomings of traditional metal quantum dots, such as easy quenching, easy agglomeration and harmful to the environment, and gradually become the substitute of other temperature sensors. In this paper, the preparation methods, performance and application fields of thermosensitive carbon dots are reviewed, the fluorescence variation law and the linear relationship between temperature and fluorescence are reviewed, and the existing problems and future development trend are analyzed and summarized, providing theoretical support for the follow-up researchers to think and learn.
Key words:  carbon dots    temperature sensing    fluorescence property    heteroatom doping    thermal sensitivity
发布日期:  2024-10-12
ZTFLH:  TQ57  
基金资助: 国家自然科学基金(32071703);江苏省自然科学基金项目 (BK20221335)
通讯作者:  *连海兰,通信作者,南京林业大学材料科学与工程学院教授、博士研究生导师。1993年于南京林业大学制浆造纸工程专业获得学士学位,2006年于南京林业大学林产化学加工工程专业获得博士学位。主要从事环保型木材胶黏剂与涂料、新型阻燃剂及生物质纳米复合材料的绿色制备及功能性应用等方面的教学与科研工作。发表论文100余篇,包括Carbohydrate Polymers、Journal of Hazardous Materials、Journal of Colloid and Interface Science、Journal of Materials Chemistry C等。lianhailan@njfu.edu.cn   
作者简介:  郭丁萌,2021年6月于南京林业大学获得工学学士学位。现为南京林业大学材料科学与工程学院硕士研究生,在连海兰教授的指导下进行研究。目前主要研究领域为碳点荧光材料和生物质纳米复合材料。
引用本文:    
郭丁萌, 李晓玉, 孙天懿, 连海兰. 热敏型碳点作为温度传感材料的研究进展[J]. 材料导报, 2024, 38(18): 23040116-11.
GUO Dingmeng, LI Xiaoyu, SUN Tianyi, LIAN Hailan. Research Progress of Thermosensitive Carbon Dots as Temperature Sensing Materials. Materials Reports, 2024, 38(18): 23040116-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040116  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23040116
1 Li Y L, Guo J, Song J, et al. Imaging Science and Photochemistry, 2019, 37(1), 46 (in Chinese).
李亚丽, 郭靖, 宋娟, 等. 影像科学与光化学, 2019, 37(1), 46.
2 Zhang Y, Liu B, Liu Z, et al. New Journal of Chemistry, 2022, 46(43), 2515.
3 An H L, Yu T T. Tianjin Chemical Industry, 2019, 33(5), 1 (in Chinese).
安宏乐, 于婷婷. 天津化工, 2019, 33(5), 1.
4 Sun Y P, Zhou B, Lin Y, et al. Journal of the American Chemical Society, 2006, 128(24), 7756.
5 Cao L, Wang X, Meziani M J, et al. Journal of the American Chemical Society, 2007, 129(37), 11318.
6 Bo C H, Jiang W J, Wang Y G, et al. Chinese Journal of Applied Chemistry, 2021, 38(7), 767 (in Chinese).
薄纯辉, 姜维佳, 王玉高, 等. 应用化学, 2021, 38(7), 767.
7 Yu J, Song N, Zhang Y K, et al. Sensors and Actuators B, Chemical, 2015, 214, 29.
8 LeCroy G E, Sonkar S K, Yang F, et al. ACS Nano. American Chemical Society, 2014, 8(5), 4522.
9 Zhao L, Zhang M, Mujumdar A S, et al. Critical Reviews in Food Science and Nutrition, DOI:10. 1080/10408398. 2022. 2039896.
10 Xu Q, Xiao F, Xu H. Critical Reviews in Food Science and Nutrition, DOI:10. 1080/10408398. 2023. 2208209.
11 Wang C, Li P, Ding J, et al. Grain Science and Technology and Economy, 2021, 46(4), 89 (in Chinese).
王超, 李彭, 丁俭, 等. 粮食科技与经济, 2021, 46(4), 89.
12 Cheng C, Shi Y, Li M, et al. Materials Science and Engineering:C, 2017, 79, 473.
13 Ci Q, Wang Y, Wu B, et al. Advanced Science, 2023, 10(7), e2206271.
14 Mehra S, Khandare S D, Singh K, et al. Materials Today Chemistry, 2023, 29, 101437.
15 Meng Y, Guo Q, Xu H, et al. Talanta (Oxford), 2023, 254, 124180.
16 Dučić T, Alves C S, Vuinić Ž, et al. Journal of Colloid and Interface Science, 2022, 623, 226.
17 Qi J, Zhang R, Liu X, et al. ACS Applied Nano Materials, 2023, 6(11), 9071.
18 Wu S, Shi J, Chen X, et al. Colloids and Surfaces B:Biointerfaces, 2023, 227, 113346.
19 Wang Y K, Gao X, Zhang X, et al. Journal of Shenyang Pharmaceutical University, 2022, 39(7), 876 (in Chinese).
王玉珂, 高旭, 张雪, 等. 沈阳药科大学学报, 2022, 39(7), 876.
20 Zhao Y, Xu L, Wang X, et al. Nano Today, 2022, 43, 101428.
21 Xu D, Huang Y, Ma Q, et al. Chemical Engineering Journal, 2023, 456, 141104.
22 Sbacchi M, Mamone M, Morbiato L, et al. ChemCatChem, 2023, e202300667.
23 Hou Q, Xing B, Guo H, et al. New Journal of Chemistry, 2022, 46(36), 17102.
24 Xu B, Li J, Zhang J, et al. Advanced Science, 2023, 10(4), e2205788.
25 Wang R, Li S, Huang H, et al. Journal of Fluorescence, 2023, 33(4), 1305.
26 John V L, Fasila P M, Chaithra K P, et al. Nanotechnology, 2022, 33, 495706.
27 Xu J, Zhang Y, Guo X, et al. Journal of Luminescence, 2023, 256, 119625.
28 Wang C, Xu Z, Cheng H, et al. Carbon, 2015, 82, 87.
29 Yang Y, Kong W, Li H, et al. ACS Applied Material Interfaces, 2015, 7(49), 27324.
30 Xiang J, Li R, Long X, et al. ACS Omega, 2022, 7(34), 29952.
31 Fan J, Kang L, Liu D, et al. ChemistrySelect, 2023, 8(19), e202300062.
32 Bozkurt E. ChemistrySelect, 2022, 7(47), e202203777.
33 Qi H, Liu C, Jing J, et al. Dyes and Pigments, 2022, 206, 110555.
34 Xu Q, Li J, Gong X. Analytical Methods, 2022, 14(36), 3562.
35 Unsworth T. Proceedings of the Institution of Mechanical Engineers, 2008, 222(7), 3272.
36 Zhang P C. Manufacture & Upgrading Today, 2021(3), 26 (in Chinese).
张鹏程. 今日制造与升级, 2021(3), 26.
37 Wang Z P, Xu J, Liu Y K. Hot Work Processes, 2021, 50(22), 6(in Chinese).
王志平, 许婧, 刘延宽. 热加工工艺, 2021, 50(22), 6.
38 Mohammed L J, Omer K M. Nanoscale Research Letters, 2020, 15(1), 182.
39 Yan F, Wang X, Wang Y, et al. Mikrochimica Acta, 2022, 189(10), 379.
40 Meng Y, Guo Q, Jiao Y, et al. Materials Today Chemistry, 2022, 26, 101170.
41 Kühni M, Morin C, Guibert P. Applied Physics B:Lasers and Optics, 2011, 102(3), 659.
42 Okabe K, Sakaguchi R, Shi B, et al. Pflugers Archiv, 2018, 470(5), 717.
43 Khan W U, Qin L, Alam A, et al. ACS Applied Bio Materials, 2021, 4(7), 5786.
44 Yan H, Ni H, Yang Y, et al. Chinese Chemical Letters, 2020, 31(7), 1792.
45 Wang C, Lin H, Xu Z, et al. ACS Applied Materials Interfaces, 2016, 8(10), 6621.
46 Li Y, Xiao X, Wei Z, et al. Zeitschrift für Anorganische und Allgemeine Chemie (1950), 2022, 648(9), e202100323.
47 He Y, He J, Zhang H, et al. Journal of Colloid and Interface Science, 2017, 496, 8.
48 Sun T, Zhang Y, Yan R, et al. Particle & Particle Systems Characterization, 2021, 38(3), 200.
49 Plakhotnik T, Gruber D. Physical Chemistry Chemical Physics, 2010, 12(33), 9751.
50 Zhao Z J, Liang T, Wang K, et al. Transducer and Microsystem Technologies, 2022, 41(12), 67 (in Chinese).
赵珠杰, 梁庭, 王凯, 等. 传感器与微系统, 2022, 41(12), 67.
51 Wang N. Preparation and analytical application of fluorescent probe on novel graphene quantum dots. Master’s Thesis, Jiangnan University, China, 2022 (in Chinese).
王娜. 新型石墨烯量子点荧光探针的制备及分析应用. 硕士学位论文, 江南大学, 2022.
52 Liao X, Chen C, Zhou R, et al. Dyes and Pigments, 2020, 183, 108725.
53 Zhang L, Lyu S, Zhang Q, et al. Industrial Crops and Products, 2020, 145, 112066.
54 Sun L, Mo Z, Li Q, et al. International Journal of Biological Macromolecules, 2021, 175, 516.
55 Zhang Z, Liu Y, Yan Z, et al. Sensors and Actuators B:Chemical, 2018, 255, 986.
56 Kalytchuk S, Polakova K, Wang Y, et al. ACS Nano, 2017, 11(2), 1432.
57 Zhang J, Nan D, Pan S, et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 221, 117161.
58 Zhang H, You J, Wang J, et al. Dyes and Pigments, 2020, 173, 107950.
59 Guo Z, Luo J, Zhu Z, et al. Dyes and Pigments, 2020, 173, 107952.
60 Mohammed L J, Omer K M. Scientific Reports, 2020, 10(1), 3028.
61 Yang H, Long Y, Li H, et al. Journal of Colloid and Interface Science, 2018, 516, 192.
62 Song Z, Quan F, Xu Y, et al. Carbon (New York), 2016, 104, 169.
63 Cui X, Wang Y, Liu J, et al. Sensors and Actuators B, Chemical, 2017, 242, 1272.
64 Liu G, Li S, Cheng M, et al. New Journal of Chemistry, 2018, 42(15), 13147.
65 Yin Q, Wang M, Fang D, et al. RSC Advances, 2021, 11(27), 16805.
66 He W, Huo Z, Sun X, et al. Microchemical Journal, 2020, 153, 104528.
67 Li C, Qin Z, Wang M, et al. Analytica Chimica Acta, 2020, 1104, 125.
68 Wang C, Zhou J, Ran G, et al. Journal of Materials Chemistry C, 2017, 5(2), 434.
69 Tang Y, Zhou X, Xu K, et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 240, 118626.
70 Zhao D, Ma W, Wang R, et al. Polymers (Basel), 2019, 11(7), 1.
71 Shi W, Guo F, Han M, et al. Journal of Materials Chemistry B, 2017, 5(18), 3293.
72 Mu Z, Hua J, Yang Y. Spectrochimica Acta Part A, 2020, 224, 117444.
73 Nguyen V, Yan L, Xu H, et al. Applied Surface Science, 2018, 427, 1118.
74 Macairan J, Jaunky D B, Piekny A, et al. Nanoscale Advances, 2019, 1(1), 105.
75 Huang Y, Lian C, Zhou J, et al. Wuli Huaxue Xuebao/Acta Physico-Chimica Sinica, 2019, 35(11), 1267 (in Chinese).
黄彦捷, 连超, 周瑾艳, 等. 物理化学学报, 2019, 35(11), 1267.
76 Liu B, Yang K, Wei X H, et al. Chinese Medical Equipment, 2021, 42(9), 88 (in Chinese).
刘博, 杨焜, 魏晓慧, 等. 医疗卫生装备, 2021, 42(9), 88.
77 Wang N, Shi J, Zhang M T, et al. Chemical Research and Application, 2020, 32(10), 1772 (in Chinese).
王宁, 石璟, 张梦婷, 等. 化学研究与应用, 2020, 32(10), 1772.
78 Liu H, Yang Y F, Cao K Y, et al. Acta Polymerica Sinica, 2021, 52(7), 741 (in Chinese).
刘慧, 杨逸霏, 曹凯元, 等. 高分子学报, 2021, 52(7), 741.
79 Meng T H, Li C R, Wang H, et al. Journal of Instrumental Analysis, 2019, 38(8), 953 (in Chinese).
孟铁宏, 李春荣, 王恒, 等. 分析测试学报, 2019, 38(8), 953.
80 Yu H, Li X, Zeng X, et al. Chemical Communications (Cambridge, England), 2020, 56(38), 5194.
81 Astafiev A A, Shakhov A M, Vasin A A, et al. JETP Letters, 2019, 110(7), 464.
82 Isnaeni, Hanna M Y, Pambudi A A, et al. AIP Conference Proceedings, 2017, 1801(1), 1.
83 Xu K J. Journal of EEE, 2016, 38(4), 70 (in Chinese).
徐科军. 电气电子教学学报, 2016, 38(4), 70.
84 Zhang G J, Huang J Q, Li X S, et al. Chinese Journal of Scientific Instrument, 1997(2), 8 (in Chinese).
张广军, 黄俊钦, 李行善, 等. 仪器仪表学报, 1997(2), 8.
85 Wang F. Electronic World, 2013(12), 94 (in Chinese).
王芬. 电子世界, 2013(12), 94.
86 Wang X F, Li Y D, Li X, et al. Analysis and Testing Technology and Instruments, 2015(2), 124 (in Chinese).
江小峰, 李亚东, 李欣, 等. 分析测试技术与仪器, 2015(2), 124.
87 Lei B, Li W, Zhang H, et al. Royal Society of Chemistry, 2015, 5(18), 89238.
88 Zhou L, Liao B, Yang S, et al. Journal of Nanoparticle Research, 2022, 24(7), 1
89 Wang C X, Huang Y J, Lin H H, et al. Royal Society of Chemistry, 2015(5), 61586.
[1] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[2] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[3] 崔晓晴, 王水莲, 王锐, 张洪艳. 二维导电纳米材料在聚合物燃烧预警及阻燃应用中的研究进展[J]. 材料导报, 2024, 38(17): 23040277-9.
[4] 曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
[5] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[6] 李良, 赵修贤, 王彬彬, 杨帅军, 聂永, 蒋绪川. 热致变色过渡金属配合物的变色机理及应用[J]. 材料导报, 2023, 37(4): 21010049-11.
[7] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[8] 吴平平, 王亚琴, 陈涛, 邹文生. 二氟苯硼酸源双发射碳点的葡萄糖传感与数字编码[J]. 材料导报, 2023, 37(23): 22030295-5.
[9] 李晨, 陈叶青, 全志鹏, 吴晓仪, 饶鹏鹏, 倪宗铭, 陈岩, 吴文海, 陈钊. 深蓝光发射碳点的改性及在电致发光器件中的应用[J]. 材料导报, 2023, 37(15): 22020030-6.
[10] 安玉龙, 刘灿, 徐开蒙, 郑云武, 林旭. 生物质碳点荧光材料在生物医药领域中的应用[J]. 材料导报, 2022, 36(22): 20100133-12.
[11] 于晓晨, 李华健, 高博扬, 蒋银林, 李小杰, 郑荣芳, 吴涵, 宋泽钰, 樊继斌, 赵鹏. Er3+/Yb3+共掺杂Ca0.5Gd(WO4)2荧光粉的发光性能和温度特性[J]. 材料导报, 2022, 36(18): 21050128-6.
[12] 韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
[13] 郭潇, 周玉洁, 高静茹, 余薇, 许翠, 韩翠平. 可激活荧光-磁共振双模态纳米材料的制备与性能[J]. 材料导报, 2020, 34(Z1): 97-102.
[14] 李焕焕, 张东东, 许子昂, 董瑶, 赵义平, 陈莉. 荧光碳点改性无纺布的制备及在汞(Ⅱ)检测中的应用[J]. 材料导报, 2020, 34(2): 2163-2168.
[15] 刘文, 李婷婷, 张冰, 张荣, 刁海鹏, 常宏宏, 魏文珑. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报, 2019, 33(3): 402-409.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed