Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21060197-10    https://doi.org/10.11896/cldb.21060197
  无机非金属及其复合材料 |
非线性光学碳点的调控及应用研究进展
曹哲勇1, 刘兴华1, 郑静霞1,*, 杨永珍1,*, 刘旭光1,2
1 太原理工大学新材料界面科学与工程教育部重点实验室,太原 030024
2 太原理工大学材料科学与工程学院,太原 030024
Regulation and Application of Carbon Dots with Nonlinear Optical Properties:a Review
CAO Zheyong1, LIU Xinghua1, ZHENG Jingxia1,*, YANG Yongzhen1,*, LIU Xuguang1,2
1 Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
2 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 12370KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳点(Carbon dots,CDs)作为一种新型零维碳纳米材料,具有优良的荧光和磷光等光学特性。随着对CDs光学性能的不断探索,学者们发现其不仅在弱光下表现出优异的线性光学特性,在强光下也表现出良好的非线性光学特性,如非线性极化率较高、非线性吸收方式可变、光限幅阈值较低以及对飞秒等超快激光具有较快的响应等,在军事、通信和医疗等领域中展现出巨大潜力。据此,本文对CDs非线性光学性质的调控及应用进行综述。首先,总结出CDs本体(CDs尺寸、掺杂元素和表面官能团等)及其外部环境(液态分散基质、固态分散基质和入射激光能量等)对其非线性光学性质的影响;其次,介绍其在光限幅、光开关、生物应用和物质检测等非线性光学方面的应用研究进展;最后,提出目前CDs在非线性光学领域中面临的问题,并对其进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹哲勇
刘兴华
郑静霞
杨永珍
刘旭光
关键词:  非线性光学  零维碳纳米材料  碳点  光限幅  光开关  生物应用    
Abstract: Carbon dots (CDs), as a novel type of zero-dimensional carbon nanomaterials, have excellent optical properties such as fluorescence and phosphorescence. With the continuous exploration of the optical properties of CDs, it is found that CDs not only exhibit excellent linear optical properties under weak light, but also exhibit outstanding nonlinear optical properties under strong light. These advantages of CDs include high nonlinear susceptibility, variable nonlinear absorption mode, low optical limiting threshold, and quick response to femtosecond and other ultrafast lasers. Thus, CDs exhibit great potential in the military, communication and medical fields. Herein, this review summarizes the regulation modes of CDs with nonlinear optical properties and their applications. Firstly, the influences from CDs themselves (CDs size, doping elements, surface functional groups, etc.) and their external environments (liquid matrix, solid matrix, laser energy, etc.) on their nonlinear optical properties are discussed. Secondly, the applications of CDs in nonlinear optical fields including optical limiting, optical switching, biology, and detection are introduced. Finally, the current problems and future potentials for applying CDs to nonlinear optics are proposed and prospected.
Key words:  nonlinear optics    zero-dimensional carbon nanomaterials    carbon dots    optical limiting    optical switching    biological application
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  O613.71  
  TB383  
  TP212.2  
基金资助: 国家自然科学基金(51972221);山西省回国留学人员科研资助项目(2020-051;HGKY2019027);山西浙大新材料与化工研究院科技研发项目(2021SX-TD012);山西省基础研究计划项目(20210302123164;20210302124604)
通讯作者:  * 杨永珍,太原理工大学新材料界面科学与工程教育部重点实验室教授、博士研究生导师。英国赫特福德大学校外博士研究生导师。“纳米光电材料及器件核心技术”山西省科技创新重点团队核心成员。1992年太原理工大学材料科学与工程专业本科毕业后到山西焦化集团有限公司工作,2004年太原理工大学化学工程专业硕士毕业,2007年太原理工大学材料学专业博士毕业。2017年6月至2018年6月在英国赫特福德大学访学一年。目前主要从事纳米碳功能材料、碳基光电材料和生物医药材料等方面的研究工作。主持并参与国家和省部级项目26项,在国内外期刊和会议上发表论文386篇,授权国家发明专利60项,授权美国发明专利1项,出版专著1部和教材2部。yyztyut@126.com
郑静霞,太原理工大学新材料界面科学与工程教育部重点实验室讲师。2010年太原理工大学金属材料工程专业本科毕业,2013年太原理工大学材料科学与工程专业硕士毕业,2018年太原理工大学材料科学与工程专业博士毕业后到太原理工大学新材料界面科学与工程教育部重点实验室工作至今。目前主要从事碳纳米光电功能材料的制备和应用研究,主持并参与国家和省部级项目12项,在国内外学术期刊上发表相关学术论文33篇,其中26篇被SCI收录,以第一作者或共同第一作者发表论文14篇,授权专利12项。zhengjingxia@tyut.edu.cn   
作者简介:  曹哲勇,2019年6月毕业于太原理工大学,获得工学学士学位。现为太原理工大学新材料界面科学与工程教育部重点实验室硕士研究生,在杨永珍教授和郑静霞老师的指导下进行研究。目前主要研究领域为碳纳米功能材料。
引用本文:    
曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
CAO Zheyong, LIU Xinghua, ZHENG Jingxia, YANG Yongzhen, LIU Xuguang. Regulation and Application of Carbon Dots with Nonlinear Optical Properties:a Review. Materials Reports, 2023, 37(7): 21060197-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060197  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21060197
1 Li Y Y, Wang W J, Wang H, et al. Crystal Growth & Design, 2019, 19(7), 4172.
2 Kiss N, Fésüs L, Bozsányi S, et al. Lasers in Medical Science, 2020, 35(8), 1821.
3 Li Q, Sun G Y. Materials Reports A:Review Papers, 2017, 31(1), 19 (in Chinese).
李强, 孙国印. 材料导报:综述篇, 2017, 31(1), 19.
4 Hu W B. Design and synthesis of two-photon absorbed organic molecule for their photodynamic therapy and optical limiting applications. Ph. D. Thesis, Nanjing University of Posts and Telecommunications, China, 2016 (in Chinese).
胡文博. 有机双光子材料的设计, 合成及其在光动力治疗和光限幅领域的应用. 博士学位论文, 南京邮电大学, 2016.
5 Ye P X, Si J H. Physics, 2000, 29(6), 344 (in Chinese).
叶佩弦, 司金海. 物理, 2000, 29(6), 344.
6 Li T B. Exploration of new third order nonlinear optical organic materials. Ph. D. Thesis, Shandong University, China, 2016 (in Chinese).
李廷斌. 有机三阶非线性光学新材料的探索. 博士学位论文, 山东大学, 2006.
7 Zhang X L. Optical nonlinearity of carbon structure and its hybrid materials. Ph D. Thesis, Nankai University, China, 2011 (in Chinese).
张校亮. 碳结构及其杂化材料的光学非线性研究. 博士学位论文, 南开大学, 2011.
8 Tutt L W, Kost A. Nature, 1992, 356(6366), 225.
9 Wang Y, Lv M, Guo J, et al. Science China Chemistry, 2015, 58(12), 1782.
10 Senge M O, Fazekas M, Notaras E G A, et al. Advanced Materials, 2007, 19(19), 2737.
11 Sun X, Yu R Q, Xu G Q, et al. Applied Physics Letters, 1998, 73(25), 3632.
12 Sendhil K, Vijayan C, Kothiyal M P. Optics & Laser Technology, 2006, 38(7), 512.
13 Sekhosana K E, Amuhaya E, Nyokong T. Polyhedron, 2015, 85, 347.
14 Cocchi C, Prezzi D, Ruini A, et al. Physical Review Letters, 2014, 112(19), 198303.
15 Kang S, Zhang J, Sang L, et al. ACS Applied Materials & Interfaces, 2016, 8(37), 24295.
16 Bourlinos A B, Karakassides M A, Kouloumpis A, et al. Carbon, 2013, 61, 640.
17 Hu C, Mu Y, Li M Y, et al. Acta Physico-Chimica Sinica, 2019, 35(6), 572 (in Chinese).
胡超, 穆野, 李明宇, 等. 物理化学学报, 2019, 35(6), 572.
18 Zhu S, Song Y, Zhao X, et al. Nano Research, 2015, 8(2), 355.
19 Liu X H, Wang J L, Wang Y L, et al. Journal of Materials Engineering, 2020, 48(4), 36 (in Chinese).
刘兴华, 王军丽, 王亚玲, 等. 材料工程, 2020, 48(4), 36.
20 Xu X, Hu G, Mo L, et al. Nanoscale, 2021, 13(14), 6846.
21 Zhu X, Wang H, Jiao Q, et al. Particle & Particle Systems Characterization, 2014, 31(7), 771.
22 Yang S T, Cao L, Luo P G, et al. Journal of the American Chemical Society, 2009, 131(32), 11308.
23 Peng J, Gao W, Gupta B K, et al. Nano Letters, 2012, 12(2), 844.
24 Zheng L, Chi Y, Dong Y, et al. Journal of the American Chemical Society, 2009, 131(13), 4564.
25 Liu R, Wu D, Liu S, et al. Angewandte Chemie International Edition, 2009, 48(25), 4598.
26 Tomskaya A E, Egorova M N, Kapitonov A N, et al. Physica Status Solidi B, 2018, 255(1), 1700222.
27 Zhao P, Li X, Baryshnikov G, et al. Chemical Science, 2018, 9(5), 1323.
28 Yi L, Ning X, Gong N, et al. Carbon, 2014, 68, 258.
29 Bourlinos A B, Trivizas G, Karakassides M A, et al. Carbon, 2015, 83, 173.
30 Tan D, Yamada Y, Zhou S, et al. Carbon, 2014, 69, 638.
31 Santos C I M, Mariz I F A, Pinto S N, et al. Nanoscale, 2018, 10(26), 12505.
32 Liu Q, Guo B, Rao Z, et al. Nano Letters, 2013, 13(6), 2436.
33 Zhang X, Wang H, Wang H, et al. Advanced Materials, 2014, 26(26), 4438.
34 Shi Y, Pramanik A, Tchounwou C, et al. ACS Applied Materials & Interfaces, 2015, 7(20), 10935.
35 Tong G, Wang J, Wang R, et al. Journal of Materials Chemistry B, 2014, 3(4), 700.
36 Lan M, Zhao S, Zhang Z, et al. Nano Research, 2017, 10(9), 3113.
37 Lu S, Sui L, Liu J, et al. Advanced Materials, 2017, 29(15), 1603443.
38 Ren J, Sun X, Wang Y, et al. Advanced Optical Materials, 2018, 6(12), 1701273.
39 Li M X, Han K, Li H P, et al. Journal of Molecular Structure Theochem, 2010, 957(1-3), 31.
40 Kim H M, Cho B R. Journal of Materials Chemistry, 2009, 19(40), 7402.
41 Li H P, Shen X P, Han K, et al. Computational and Theoretical Chemistry, 2013, 1023, 95.
42 Ravindra H J, Chandrashekaran K, Harrison W T A, et al. Applied Physics B, 2009, 94(3), 503.
43 Gao M L. Photophysical properties of carbon quantum dots. Master's Thesis, Heilongjiang University, China, 2015 (in Chinese).
高美玲. 碳量子点的光物理特性研究. 硕士学位论文, 黑龙江大学, 2015.
44 Qiao S. Design & synthesis of carbon-based nanomaterials and their optical properties. Master's Thesis, Soochow University, China, 2016 (in Chinese).
乔石. 碳基纳米材料的设计, 合成及光学性质研究. 硕士学位论文, 苏州大学, 2016.
45 Bai L, Qiao S, Fang Y, et al. Journal of Materials Chemistry C, 2016, 4(36), 8490.
46 Sheik-Bahae M, Said A A, Stryland E V. IEEE Journal of Quantum Electronics, 1990, 26(4), 760.
47 Fan G, Ren S, Qu S, et al. Optics Communications, 2013, 295, 219.
48 Papagiannouli I, Bourlinos A B, Bakandritsos A, et al. RSC Advances, 2014, 4(76), 40152.
49 Li H P, Bi Z T, Xu R F, et al. Carbon, 2017, 122, 756.
50 Zhou J, Li H, Yang Z, et al. Carbon Trends, 2021, 4, 100054.
51 Zhu M H, Hu P. Instrumental analysis (forth edition), Higher Education Press, China, 2009 (in Chinese).
朱明华, 胡坪. 仪器分析(第四版), 高等教育出版社, 2009.
52 Yu J K, Yong X, Tang Z Y, et al. The Journal of Physical Chemistry Letters, 2021, 12(32), 7671.
53 Bai L, Qiao S, Li H, et al. RSC Advances, 2016, 6(98), 95476.
54 Aloukos P, Papagiannouli I, Bourlinos A B, et al. Optics express, 2014, 22(10), 12013.
55 Jiang L, Ding H, Xu M, et al. Small, 2020, 16(19), 2000680.
56 Yin K, Lu D, Tian W, et al. Journal of Materials Chemistry C, 2020, 8(26), 8980.
57 Yin K, Lu D, Wang L, et al. The Journal of Physical Chemistry C, 2019, 123(36), 22447.
58 Ma L, Xiang W, Gao H, et al. Dyes and Pigments, 2016, 128, 1.
59 Vijesh K R, Sebastian M, Nampoori V P N, et al. AIP Advances, 2019, 9(1), 015219.
60 Wang A, Yu W, Fang Y, et al. Carbon, 2015, 89, 130.
61 Du Y, Dong N, Zhang M, et al. Physical Chemistry Chemical Physics, 2017, 19(3), 2252.
62 Huang L, Zheng C, Guo Q, et al. Optical Materials, 2018, 76, 335.
63 Huang L. Preparation and nonlinear optical limiting performance of carbon nanodots composite gel glasses. Master's Thesis, Fujian University of Technology, China, 2018 (in Chinese).
黄丽. 基于碳纳米点复合凝胶玻璃的制备及其非线性光限幅性能研究. 硕士学位论文, 福建工程学院, 2018.
64 Zheng C, Huang L, Guo Q, et al. RSC Advances, 2018, 8(19), 10267.
65 Ouyang Q, Xu Z, Lei Z, et al. Carbon, 2014, 67, 214.
66 Kipnusu W K, Doñate-Buendía C, Fernández-Alonso M, et al. Particle & Particle Systems Characterization, 2020, 37(6), 2000093.
67 Kimiagar S, Abrinaei F. Nanophotonics, 2018, 7(1), 243.
68 Wang X, Bai L, Shen L, et al. Optical Materials, 2019, 95, 109216.
69 Bai L. Design and synthesis of carbon quantum dots and their nonlinear optical properties. Master's Thesis, Soochow University, China, 2018 (in Chinese).
白亮. 碳量子点的设计合成及其非线性光学性质研究. 硕士学位论文, 苏州大学, 2018.
70 Vijesh K R, Musfir P N, Thomas T, et al. Optics & Laser Technology, 2020, 121, 105776.
71 Hu S, Dong Y, Yang J, et al. Journal of Materials Chemistry, 2012, 22(5), 1957.
72 Xie Z, Wang F, Liu C. Advanced Materials, 2012, 24(13), 1716.
73 Cao L, Wang X, Meziani M J, et al. Journal of the American Chemical Society, 2007, 129(37), 11318.
74 Qian J, Wang D, Cai F H, et al. Angewandte Chemie, 2012, 124(42), 10722.
75 Li D, Wang D, Zhao X, et al. Materials Chemistry Frontiers, 2018, 2(7), 1343.
76 Ha H D, Jang M H, Liu F, et al. Carbon, 2015, 81, 367.
77 Leite R C C, Porto S P S, Damen T C. Applied Physics Letters, 1967, 10(3), 100.
78 Peng R, Xin J, Kang K B, et al. Journal of Lanzhou University, 2013, 49(6), 854 (in Chinese).
彭蕊, 辛晶, 康开斌, 等. 兰州大学学报, 2013, 49(6), 854.
79 Saravanan M, Girisun T C S, Vinitha G, et al. RSC Advances, 2016, 6(94), 91083.
80 Huang L, Huang J X, Chen M X, et al. Journal of Fujian University of Technology, 2017, 15(4), 338 (in Chinese).
黄丽, 黄嘉欣, 陈美潇, 等. 福建工程学院学报, 2017, 15(4), 338.
81 Feng M, Zhan H, Chen Y. Applied Physics Letters, 2010, 96(3), 033107.
82 Biswas S, Kole A K, Tiwary C S, et al. RSC Advances, 2016, 6(13), 10319.
83 Yang J L. Acta Physico-Chimica Sinica, 2020, 36(11), 11 (in Chinese).
杨金龙. 物理化学学报, 2020, 36(11), 11.
84 Ding T. The mechanism of structural change in Au3+-doped BK7 glass irradiated by femtosecond laser. Master's Thesis, Zhejiang University, China, 2007 (in Chinese).
丁婷. 激光诱导贵金属掺杂玻璃的微结构变化机理. 硕士学位论文, 浙江大学, 2007.
85 Yu Y. Investigation of surface plasmon resonance-induced enhancement effect of third-order optical nonlinearity in Au nanostructure. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2015 (in Chinese).
虞应. 表面等离激元共振诱导的金纳米结构的三阶光学非线性增强效应研究. 博士学位论文, 华中科技大学, 2015.
86 Huang Z R. The design and research of waveguide coupling devices based on graphene SPPs. Master's Thesis, Hunan University, China, 2015 (in Chinese).
黄臻荣. 石墨烯SPPs波导耦合器件的设计和研究. 硕士学位论文, 湖南大学, 2015.
87 Tan Y L. Studies on third-order nonlinear optical properties of carbon nano-composite materials. Master's Thesis, Henan University, China, 2015 (in Chinese).
谭云龙. 碳纳米复合材料的三阶非线性光学性质研究. 硕士学位论文, 河南大学, 2015.
88 Xu W J, He C T, Ji C M, et al. Advanced Materials, 2016, 28(28), 5886.
89 Mizrahi V, DeLong K W, Stegeman G I, et al. Optics Letters, 1989, 14(20), 1140.
90 Cheng S J, Lovell J F, Chen J, et al. ACS Nano, 2013, 7(3), 2541.
91 Li Y. Design, synthesis of water-soluble two-photon absorption materials and their potential applications in biological field. Ph. D. Thesis, Wuhan University, China, 2013 (in Chinese).
李昱. 水溶性有机双光子吸收材料的设计, 合成及在生物领域的潜在应用研究. 博士学位论文, 武汉大学, 2013.
92 Li S H. Studies on the preparation of n-doped carbon quantum dots and their applications in cellular imaging. Master's Thesis, Shanghai Jiao Tong University, China, 2018 (in Chinese).
李士浩. 氮掺杂碳量子点的制备及其在细胞成像中的应用研究. 硕士学位论文, 上海交通大学, 2018.
93 Zhao S, Wu S, Jia Q, et al. Chemical Engineering Journal, 2020, 388, 124212.
94 Pandiyan S, Arumugam L, Srirengan S P, et al. ACS Omega, 2020, 5(47), 30363.
95 Rajendiran K, Zhao Z, Pei D S, et al. Polymers, 2019, 11(10), 1670.
[1] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[2] 杜辉, 陈巧, 刘婷, 贺毅, 金应荣. 非线性晶体和光电材料硒化镓的研究进展[J]. 材料导报, 2022, 36(5): 20080191-10.
[3] 安玉龙, 刘灿, 徐开蒙, 郑云武, 林旭. 生物质碳点荧光材料在生物医药领域中的应用[J]. 材料导报, 2022, 36(22): 20100133-12.
[4] 郭潇, 周玉洁, 高静茹, 余薇, 许翠, 韩翠平. 可激活荧光-磁共振双模态纳米材料的制备与性能[J]. 材料导报, 2020, 34(Z1): 97-102.
[5] 李焕焕, 张东东, 许子昂, 董瑶, 赵义平, 陈莉. 荧光碳点改性无纺布的制备及在汞(Ⅱ)检测中的应用[J]. 材料导报, 2020, 34(2): 2163-2168.
[6] 刘文, 李婷婷, 张冰, 张荣, 刁海鹏, 常宏宏, 魏文珑. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报, 2019, 33(3): 402-409.
[7] 王磊, 王党会, 肖美霞. 磷酸双乙酸胍分子中基团间作用的量子化学从头算研究[J]. 材料导报, 2019, 33(20): 3508-3511.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed